PCD C Compiler
Reference Manual

June 2012

Table of Contents

PCW Overview....
Technical Support ...
Directories...............
1 L= e g o £ TR
Invoking the Command Line Compiler
Program Syntax
OVETAII SEIUCTUIE ...ttt ettt e e e e ettt e e e e e st et e e e e e e s e s aateeeeaaesaannneeeeeaaens
[070] 1011 41=T 0| SO PP PO P PP PPPPPPP
Trigraph Sequences..................
Multiple Project Files
Multiple Compilation Units
Example ...,
STATEMENTS
SEAIEIMENTS ..
) PSPPSR

Expressions
X T ESSIONS ...ttt ettt a bbbt e e e et
(O] 61=T 2= 1 (o] £= PSPPI
Operator Precedence
REFEIENCE PAraQMELEISviuiiii ettt ettt e e e e e e e et e e e e e e e e s et e e e e eeesessaaeeeeeens
Variable ArgUMENT LISTScooiiiiiiiiieie ettt e e e e e st e e e e e e e e nbbreeee e s
Default Parameters

Overloaded Functions...............

DATA DEFINITIONS.........ccvvvvveee

Basic and Special types.............

Declarationseevvvvvvevenennns

Non-RAM Data Definitions

Using Program Memory fOr DATA...........eeeieeaiiiiiiieeie et e e e e e e e e e e

Function Definition
FUNCLIONAI OVEIVIBWS.......cootiiiii ettt e e e e e e et e e e e e e e ee st e e e e e e e esstaaeeeeeesessaaneaeaeeees

TEST PCD

Analog Comparator
CANBUSoviiiieeiiiieeeee e

CRC ...,

DCl..coiiiieie

Data Signal Modulator
=] o (=0 I Y TP RRRT P
General Purpose I/0
L] o101 @F= T o | (1] £ PP PPPPRPt
Internal Oscillator
Interrupts.................

LINKEE ..
Output Compare/PWM Overview
Motor Control PWM
PMP/EPMP

Voltage Reference
WDT or Watch Dog Timer
PRE-PROCESSOR
#ASM #ENDASM
FEBANK DA ittt ettt ettt ettt ettt ettt £ttt £ttt sttt ettt sttt bttt st bttt ittt e st nnnenrnnnen
#BANKX
#BANKY

#DEFINEDINC
#DEVICE.............
DEVICE...........
H#ERRORcociiiiiieiicrcee
) O] I (o] 0[] 4 1) TP PP PPTPPTP
B L E ettt E et b e bt bt bbbt s
__FILENAME__ ..
FEEILL _ROM ..ttt ettt ettt ekt e e st e st a bt e et e e e e

iv

Table of Contents

U SES .. e e e e e e 112
#HEXCOMMENTcccoviiieenn. ... 113

#IF expr #ELSE #ELIF #ENDIF
#IFDEF #IFNDEF #ELSE #ELIF #ENDIF
#IGNORE_WARNINGS
#IMPORT (options)cccee......
H#INCLUDEccovvvevviieeeeiiieens
#INLINE
| B0 oo GO TSP TP TP P PP PP PPPPPPPPPPPPPPPIN
#INT_DEFAULT

#USE DELAY
H#USE DYNAMIC_MEMORYoiiiiiiiiieitit ittt ettt ettt b et ettt ettt et e bt 134
FUSE FAST _LO ittt b e bt ekt b e b et ekt e ket e bt e e be e e be e e be e s beeebeeenteas
#USE FIXED_IO
FEUSE 12C .ottt ettt b e bbb bbbt b ekttt e et e bt e be e beeenbeas
FUSE RS232.... ittt etttk etttk b bt bbbttt
#USE RTOS
FEUSE SPl ..ttt bbbt
HUSE STANDARD_IO ..ottt ettt ettt ettt b e bt 142
#USE TIMER . 143
#USE TOUCHPAD 144
H#WARNING ..o 145
#WORD............... 145
#ZERO_RAM ... 146
BUILT-IN FUNCTIONS DIFECIOMNY ...c.uvviiieeiitie ittt ettt 147
BUILT-IN-FUNCTIONS ...ttt ettt ettt ettt e nir e e e 147
abs()
E=To (oo (o] o =T (O I= Vo [o [0 0 T=Y2 (O T PP PP R PPPPPON 152

TEST PCD

Vi

F= LS o { () PP 153
=101 (PP PP PPPR 153
AtOF() ALOTAB() ALOTOA() ..vveeieeeee ittt e e e e e e s 154
atoi() atol() atoi32() AtOI48() ALOIBA().uvvrereeeeeeiiiiieieee e e e ittt e e e e e s e e e e e s e e e e e e s e ennraeaeeae s 155
o] o[- 1 () IR SOPPPURRN 155
DIE_FIFSE() veeerie ittt 156
o] A = (PR SPPPPUPR 156
o1 Y= [(U UOTUPURT 157
oL 1 A (S { () IR UOTUPURT 158
Lo Y=T= T ol o () TR SOTUPURT 158
(o= 1] oo () TP PP PP PPPPRO 159
o= 1 U PSPPI 160
o LT T) C=T (0 oL () PP EPR SRR 160
crc_calc() crc_calc8() crc_calclb() €rc_CalC32() vuvveeieeiiiiiiieee et 161
o (o L1 (gL e /=) I PR U EPR PP 162
Lo F= Lo 1 (=T () TP 162
Lo (o o F=\ o= W (=T ot =TV To [TP 163
Lo (o I (=T To [TR 164
(o (o) =L [() T T T PP P P UP PP PPPPPON 165
Lo (oI = g TS 4 L (=T |/ (O T RS 165
Lo (o I (=T () T PRSPPSO 166
Lo =] o 0 o L= (O T PSR SRPRR 167
Lo =] o o 0 Y () R PPSR 167
(o L=] Fo N U] G PP P TP P PP TP PPPPPPN 168
ISADIE_INTEITUDTS(). +veeeereteeiit ettt ettt et e et e e s b e s st e e ennne e e e s 169
(o LV I (e 1Y/ (O TP OPRRPR 170
(o0 0F= T = T () PO T PP PP UP R PPPPPON 170
(o 40T T 110] (R PPRR 171
(LA Vo)L a1 (=] £ (0101 (RSP RR 172
©raSE_PrOGIAM_ITIEITIONYeititetiteatteestteestre e sttt e ass e e sttt e ssb e e sa bt e aaneessb e e aar e e as bt e et e e s beeabeesbeeeneeannes 173
1237 o () T R PPRR 173
L LA =T o (o =T) T T PP PP PP PPPPPPN 174
LE= 1 LT () T PO PP PP PP R PPPRO 174
L0 Lo T (O T P T PP PP PP RPPPPPRTON 175
L1000 1o [T P T PSP PP PP RPPPPPRTON 175
LLCCIT (O T T P TSP PP RPPPPPPO 176
11020001 OO PPTPPRP 176
oL o= o (U] (=T () PP UUPT PP 177
gL _MOLOI_PWIML_COUNE() 1eiiiitiieiete e e ettt ettt e e e e ettt e e e e e e sttt e e e e e e asbbb e e e e e e e e asnnnnneeeaeens 178
To =) B (1ol T () PP UUTT TR 178
(o= 0 LT 7 () T T T T PP P PP R PPPPPON 179
(o= A 1 T=T =T () T P PP PP R PPPPRON 179
(o= B 0 T o () I T PP P PP RPPPPPPO 180
(o =T B L= 0|V () T T T PP PP PP PPPPON 180
Lo L= B T () PP UUPT TP 181
getc() getch() getchar() FOELC() «uveeeiiieieee e 181
T =1 =] 01V () I PP U TP 182
Lo (I (0[] K1 () PP UUTT PR 185
(o To] (o T To [0 [=21] (O T T PP PP R PPPPPON 186

Table of Contents

[oTTo] oIS o1=T=To I Vo (oo (o] =T () TR UOUPURT 186
(2o (<) r= L= () U SOTUPURR 187
(124 og o] [TR U SOUUPURT 188
(2o (Y= (o [() TR PO OPPPURRN 188
[= VLT Lo (o | () TP UR P SOPPPUPRN 189
(2o o 1=1=To [() PR SPPPPURTN 190
2o = Ly { () IR PPPPPUPRN 190
[P oR = (o] o () PP PUPPR PP 191
(D24 1 1= () T USRI 191
1] 001 { () I USSR 192
(1] o101 ol g F= T o [T () TR SOTUPURT 193
1] o0 S = L= () TP PR PP OPPPUPRN 193
1] o101 () IR SPPPPURR 194
INEEITUPE _ACTIVE() vvrrieiieeiiiiiei ettt e et e e e e e et e e e e e e e e s et e e e e e e e e s asbbaseeeeeesansabareeeeeeaaanes 194
isalnum(char) isalpha(char) isdigit(char) islower(char) isspace(char) isupper(char)
isxdigit(char) iscntrl(x) isgraph(x) iSprint(X) ISPUNCL(X)eeeereeeiiiiiiiieee e eiiieiee e e eiieeee e e e 195
(1572 a1 (o] o T [() I PP PT PR PUPPPPPI 196
10 =T () U SOUUPURR 197
0] 1 I PSRV PP OPRTVRPOPRRIN 197
=T o L] = Vo [0 | LTS () PP PPR 198
Eo o1~ (O I OO O O T O TSP SO VPP PPRPOVPPPPPPPPN 199
[0 C o PRSP 199
oo (0 T T O T OSSO P SOV PP OPRPOVPPPPPPPRN 200
(o7 0 G PP PP PUPPRPP 200
[oTaTo 101 o1 () TP O PP PT PP PPPPPPI 201
0T TS () T OO PT PP PUPPRPPP 201
0T L T () T PP PT PP PUPPPPPI 202
0T 13 2 () PRSPPI 203
L0 0T= 1] o () T PRSPPI 203
MEMCPY() MEMMOVE() «ereiueiieeiaitieeeaieieestteeeeatteeeeateeeessseeeesasteeeeaaseeeeaanneeeesnbneeeaaseeeeeanseeeessneens 204
L001=] 01T () PRSPPI 205
[0aTo 0) { () PP PP PPPUPPPP PP 205
L1010][TP PTP PP PPPPRO 206
AT 10 1< () PSP PP PP PPPPPPP 206
Offsetof() OffSELOMDIT() ..o.vveeeie e 207
(010110101 () I T PP PP R PPPPPON 208
Lo 1011 o] U1 A oL () I PP UUTT TP 209
Lo T0Li o U1 Ao 11V =T (TP UU PP 210
Lo T0L i o] U1 Ay 1 (o = L () TP UU PP 210
o101 o101 o TTo | o1 PP UUTT TR 211
(o101 10101 [0V () T T PP PP R PPPPON 211
(o101 101U Y (ol [o] [T (0 T P PP PP UP R PPPPPN 212
LT (o] (O I PP PP PP P PUPPP PP 212
PMP_AAArESS(AAUIESS) ...eeiueeeee ittt ettt e e b e e et e e e e s 212
pmp_output_full() pmp_input_full() pmp_overflow() pmp_error() pmp_timeout() 213
] g 0TI (Y= Lo [T O PO PP UU TP OPPPPPRPTN 214
PO X PUITUPS () -eeeeeeeeeeiiiiit ettt ettt e e e e e et b b et e e e e e s aabbbe e e e e e e aannbnnneeeeeeaannns 216
[L0 1N I o1 () IO TP UUT P OPPPPPRRTN 216
PN FPIINTI() oo 217

TEST PCD

psp_output_full(') psp_input_full() psp_overflow() psp_error() psp_timeout()cccceeeerrnnee 219
psp_read()

psp_write()

PUEC() PULCNAI() FPULC(). iririeiie ettt e e e e e e e e e e s et a e e e e e e s eaabnreeeeeeeanes 221
o101 T I 0101 1 () PR UOPPURRN 221
Lo LTI e L= Aot 10 1 1 () PSP 222
Lo LTI A oo 1 Lo 1 () PSP 222
Lo =TI c= LU (P UTPRR 223
Lo £S04 { () TP 223
7= 1 o [PR OUPURRT 224
(== o [To [of (O I C=T- To =T (o322 () U SRTUPURR 224
read_configuration_MEMOIY ()ccoiiiuiiiiiie e ettt ee et e e e e e e e e e e e s st e e e e e e s eabareeeeeeeanes 225
(== Lo [=TT o1 (o] o 1 (0 IR RS OPPPURR 226
(== To =Y (=T o To (=T I = Vo1 PR SOPPPURRN 226
(Y=o [a1 To | g TRSY o 1cT=To I Lo (o] () P PO T P OOPPPUSRN 227
read_Program_MEMOIY() «..eeeeiireeeeaereeesireee ettt e s atee e s sre e e e s e e e st e e e s ssnn e e e sann e e e abreeennnnneeennnneees 228
[T To I (] 0 00 =T 0 1o oY/ (O P TP PUPRP PP 229
[T- 1] (oo () USRS 229
[(SRT= od o1U T () PP P PP PUPPPPPI 230
=25 = L A o= U0 1= () T PR PTPPR 230
L2 = L Ao L () PR PTPPR 231
01 2= (I (=Y 1 () I PR PUPPR 232
o) -1 (I 1o] 1 (() T PR PUPPR 233
(o= E=T g0 (T (= o [() PP PT PP PUPPPPI 233
(o= =T I 1 (= () O PP PP PPPPPPPI 234
(o 1= To [T PP PT PP PPPPPPPI 234
(o 1 =T () I PP PP PP PUPPPPPI 235
(o R U= 1 { () T PRSPPI 235
(0 R o [1ST- 1][PR PUPPR 235
(o R =Tt F= o] T PRSPPI 236
(o R 14 1o N o To [PR PTPPR 236
(o R 14 IS0 T (=7 To [O TP PP PP PPPPRPPI 237
(o R 14 IS ST =T o o [O PP PP PP PUPPPPPI 237
TEOS_OVEITUN() eteenttieeeitei ettt e ittt e ettt e ettt e e ettt e e st e e s st e e ek et e e s et e e ss b bt e e eabbe e e e nbneeennnnee s 238
L1 Co R 0 o T PP PP PP PPPPRPPI 238
TEOS_SION@I() - reeeeittiee ettt ettt ettt h e et e e ekt et e s e e et e e e s 238
(0TI = 1] () IR O TP U TP PPPRPPRRTN 239
(oL (=10 010 F= L= () PP PP UUT T PPPPPPRRTN 239
TEOS_WVAIT() +eeeeeeruettttt et e e e s ettt ettt e ettt e e e oottt e e e oo e bbbttt e e e e e s ab b bttt e e e e e e nbbb et e e e e e e e annnbnneeeeeeeannn 240
(0T (o [O U PP PP TP PPPRPPURTN 240
set_adc_channel() set_adc_cChannel2()ccoouiieiiiiiiii e 241
SEL_COMPATE_TIME() +eeeiuieiieiitiee ettt ettt e e bt e ettt e e et e e e s br e e e e aabr e e e ennneeennnee 241
SEL_MOTOT_PWIT_AULY() ..evtieiitiee ittt ettt ettt et e et e e s b e e e st e e e eanne e e e nnes 242
SEL_MOTOT_PWITI_EVEINT().rtteiuetieeiiitieeeeitit e ettt et e e ettt e st e e st e e e ettt e e st e e e s b e e e e anbr e e e nnnneeennnes 242
1= i aTe] (o) G U o 1 () IO PP UTP PP 243
1= o 1V LU o] TP UU TP 243
S (o T () TP PP 244
L R U 0= o () T PP UUTT TP 245
A (11 0=T 1 =T P T P PSP P P PP PP PPPPON 245

vii

Table of Contents

S A 00 =T () TR ETT R UTPRI 246
L= A 00 =T 1Y/ () ISP 246
S R (TS () T TPRR 247
= U] o =T=To [() IO PSP 247
=11 [00] o (0 IS EPR PP 248
setup_adc(mode) setup_adC2(MOUE)........euiieiiiiiiiiiiie et e e e a s 249
setup_adc_ports() Setup_adC_POMS2()..uueieeeeiiiiiiiiiee e ettt 249
LS L o o= o (1 (=T () IR TR 250
U0 o ote] g o =1 (o] { () I PP UR PP PPPRO 251
SELUP_COMPATE([) +.treeeeeereeeeieeee sttt e e st e et et e e sst et e e ekt e e st e e e e s s e e e e s b e e e e aanee e e s nr e e e e anre e e e nnnneeennnes 251
S (U] oI ol o (1 Lo [=) TP 252
=100 oo F= Uod () I TP EPR SRR 253
=100 oI (o1 IR PSPPI 253
=100 oI [1 =Y (O PSP 255
setup_high_SPEEA_A0C() ...ccoiuriiiiie e e e e e e 255
S ol a1l TS o J=T=To HE= To (ol o F- V1 { () TP 256
SELUP_IOW_VOI_AETECT() .vvieiirieeiitiee ettt e e e e e 257
S 0 oI gaTo) (ol g o111V o 1 () IR P S TTPRR 257
SELUP_OSCHIALON()+ttt etttk e et e e bt e e e e e s b e e e sn b e e e 258
setup_pmp(0ption,addreSS_MASK)c.uiiiiiieiee et 259
SELUP_POWET_PWIMT_PINS() 1eutteeeeiitieeeatieeeesiteeeesteeeeatteeessateeeessbseeeassteeeeanseeeesnneeeeeaneeeeesseeeesnnnes 260
setup_psp(option,addreSS_MASK)ccueiiiiiiiiei e 260
L= 10T o T[T I PRSPPSO 261
=110 o T £ (ol (O T T PP PP R PPPPPPN 262
SELUP_ITC_AIAIMN() 1.eteeeeiei ettt e e 262
SELUP_SPI() SEIUP_SPIZ2() +ereiurreetiitieeeeitit ettt ettt e ettt e et e e s e e e 263
SEEUP_TIMEIX() +reeeitrieeeeiteie e sttt ettt ettt et et e ekt e et e e s b e e e e b bt e e eab et e s b b e e e e anbr e e e ennne e e e nnes 264
L= U0 o T 100 LT Y (RS 265
=00 o TR0 LT S =T (PR TPRR 266
L= 10 o T - U () R OPRR 266
L= L0 o T/ =: () I SR SPPRR 267
SEUUDP_WOL() 1 tteee ittt e ettt ettt sttt e et e e ekt e e st e e st e e e b e e e nb et e e b e e e n e e e e 268
] 311 1= (IO P PR OPR PR 268
SNHFE FIGNT() 1ottt 269
sin() cos() tan() asin() acos() atan() sinh() cosh() tanh() atan2()cccceevrrreeiniieeiniiieenne 270
L] [ST= o]) T PP PP PP R PPPPPON 271
spi_data_iS_iN() SPi_data iS_IN2() ..ceeeurrreieeeeeiiiiiiiee ettt e e e e s 272
SPI_rEAA() SPI_TBAAZ() .eeieeiiiiiiiiiee ettt e e e et e e e e e e e e e e e e e e e e e as 272
SPI_WITLE() SPI_WITEE2() «ereeiiiiieiiete ettt e e e e et e e e e e e s e bbb e e e e e e e e snnnreneeeeeas 273
] o T (=] £ () T PP UU TP 273
L o110 111 (T O TP P PP PPPPPON 274
Lo () T T T PP P PR PPPPON 274
L= L [0 [) T T PP PP PR PPPPPO 275

STANDARD STRING FUNCTIONS() memchr() memcmp() strcat() strchr()
stremp() streoll(') strespn() strerror() stricmp() strlen() striwr() strncat() strncmp(

) strncpy() strpbrk() strrchr() strspn() Strstr() StXM() .o 275
L] 1 (oF= L () O PP U TP TTPPPPP 277
LS 1 (o]] { () TP UUPP TP 277
LS 1 1 1] o] (O T T PP UP R PPPPON 277

TEST PCD

LS 1 (olo] | [() T TP 277
1o)Y T 1] o)/ () PSR STRPRR 278
S I R @ST o] VL (T U PP P RO P P OPRRPR 278
L1 [=T T (PSPPSR 278
L1010 (0 TP PP U PRSPPI 278
1T 1 { () T PSPPI 279
L1 aTetn0] o () ISP 279
L] 1 T o) Y/ () TP 279
LS 17 0] o £ () TP 279
L] 1 o 0 (RPN 279
LS 1(o1] o] | () IR 279
L1611 () PRSP 279
Strtod() StEOf() SIITOFAB() ..o a s 279
14 (0] () PSPPI 280
L 14 (o] (I PSSP 281
L] 11 (0 10| T PP PP PPPPP 282
LS 1041 11 TP TPRR 283
LSV o () TP 283
Lre] (o0 =T QI (o] To] o 1=] { () PO PP P PP PP PPPPON 283
LEo T8 (et g] o= To o =1 (o () I RS TTPR 284
L(o T8 (et o] o= To N 11 () T PSSR 285
LEo T8 (el g o= o JES] r= Y T () RS TPR 285
1= T Lo SRR 286
12 =] 0o [P PP PP P PP RPPPPPPON 287
{22 1 = 1 PP OO PP PP PP PPPPPPPPPPPPPPPPPPIN 287
Write_CONfIGQUIAtION_MEMOIY() ..eeeiiriieiiiiee ittt ettt e e e e e snne e e e 288
LR =TT o] (o] 1o T PSP PP PP RPPPPPPO 289
LI oY= aTo (= To I = Vo 1 RS OTPR 289
LI oTCeTo] = Lo a1 1= 1 aTo] oY/ (O RSP 290
Standard C INCIUAE FlES........c..uiiiiiiiii ettt ettt e sine s 291
(=T (oI T T T PP P RO PPTPPP PRI 291
L0 T= L1 o P PSP PP UP ST PPPRON 291
T 1S o PP P PP PUPPPPPP 292
[oTor=1 [N o B PP PP PP PPPPRPP 293
=11 00] o 1Y P PO PP PP PP R PPPPPON 293
510 [0 1= o HO T T PP UP R PPPPPON 293
SO N e 293
SEAIIDL N 293
ETTOI IMESSBTES ...eeeiiiiiiiiiiiiiitt ettt ettt ettt sttt ettt sttt s e bt s e e e s e s e nnnnnrne 295
COMPIlEN EFTOr MESSATES. ... etieeiiee e ettt e ettt e e e e ettt e e e e e e bt e e e e e e e bbb e e e e e e e s aannnneeeaeeas 295
Compiler WarNiNg MESSAGEScieiuieieiiiiiie ettt ettt ettt e et e e et e e s s e e e s e e e anne e e e nanes 305
Compiler Warning MESSAUESvvtiiiiiiieiiiieeeiiiee ettt et e st e et e s s e e st e e e snne e e s nnes 305
Common QUESHIONS NG ANSWETSueiiieeiiiiiiiiieeee e e aeieieee e e e e s et eeaeeesaaaeraeeeaaessaanstreeeaaeeasanseneees 309
How are type conversions handIed?coooiiiiiiiiiiiiiee e 309
How can a constant data table be placed in ROM? ... 310
How can | use two or more RS-232 ports 0N 0NE PIC®?uvviiiiiiiiiiiiiiiiiiiniiiiiieriniseninnnenennnes 311
How do | directly read/write to internal regiSterS?..........cuuiiiiiiiiiiiiee e 312
How do 1 do @ Printf t0 @ STHNG?eeeiiiieiiee e e e e e 312
How do | get getc() to timeout after a specified tiMe?oooiiiiiiee e 313

Table of Contents

How do | make a pointer to @ fUNCHON?ooiiiiiie e e 314
How do | wait only a specified time for a button press?.........314
.. 315

How do | write variables to EEPROM that are not a word?
How does one map a variable to an 1/O port?ccccccvveveeeeeiiiiiieieeee e ... 315
How does the compiler determine TRUE and FALSE on expressions?....... ... 316
How does the PIC® connect to0 @ PC?cooociiiiiiiiieiiiiee e . 317
How does the PIC® connect to an 12C device?c........ ... 318
How much time do math operations take?c.cccceevirieeiriiee e ... 319
What are the various Fuse options for the dsPIC/PIC 24 chips?................ ... 319
What can be done about an OUT OF RAM EITOI?uueiiiiiiiiiieiiee et e e 321
What is an easy way for two or more PICS® to COMMUNICAIE?c.evvervriieriieieeiiiee e 322
What is an easy way for two or more PICs® to communicate?................... ... 323
What is the format of floating point NUMDBEIS?ovviiiiiiii e 323
Why does the .LST file [00K OUt OFf OFAEI?coeeiiiiiiiiiiie e 325
Why is the RS-232 not working right? 326
Example Programsccccceeeiiiiiiiieniee e, ... 329
EXAMPLE PROGRAMS 329
Software License Agreement ..341

SOFTWARE LICENSE AGREEMENT 341

Xi

OVERVIEW

Voo
e

C Compiler

PCD

PCD is a C Compiler for Microchip's 24bit opcode family of microcontrollers, which include the
dsPIC30, dsPIC33 and PIC24 families. The compiler is specifically designed to meet the unique
needs of the dsPIC® microcontroller. This allows developers to quickly design applications
software in a more readable, high-level language.

The compiler can efficiently implement normal C constructs, input/output operations, and bit
twiddling operations. All normal C data types are supported along with special built in functions to
perform common functions in the MPU with ease.

Extended constructs like bit arrays, multiple address space handling and effective implementation
of constant data in Rom make code generation very effective.

PCW Overview

Beginning in version 4.XXX of PCW, the menus and toolbars are set-up in specially organized
Ribbons. Each Ribbon relates to a specific type of activity an is only shown when selected. CCS
has included a "User Toolbar" Ribbon that allows the user to customize the Ribbon for individual
needs.

File Menu
Click on this icon for the following items:

New Creates a new File

Open Opens a file to the editor. Includes options for Source, Project, Output, RTF, Flow
Chart, Hex or Text. Ctrl+O is the shortcut.

Close Closes the file currently open for editing. Note, that while a file is open in PCW for
editing, no other program may access the file. Shift+F11 is the shortcut.

Close Closes all files open in the PCW.
All
Save Saves the file currently selected for editing. Crtl+S is the shortcut.

Save Prompts for a file name to save the currently selected file.

TEST PCD

As
Save All All open files are saved.

Encrypt Creates an encrypted include file. The standard compiler #include directive will
accept files with this extension and decrypt them when read. This allows include
files to be distributed without releasing the source code.

Print Prints the currently selected file.

Recent The right-side of the menu has a Recent Files list for commonly used files.
Files

Exit The bottom of the menu has an icon to terminate PCW.

Project Menu Ribbon

@’ Preect| Bt Sewch Opbsw Corprke Wiew Teols Drbeg Oocwmest UserToot Bae "1 o
- - .'
I'_u:Jm Geate ooy B s Cose e B 1001

eojedt

Project Open an existing project (.PJT) file as specified and the main source file is loaded.

PIC This command is a fast way to start a new project. It will bring up a screen with fill-

Wizard in-the-blanks to create a new project. When items such as RS232 I/O, i2C, timers,
interrupts, A/D options, drivers and pin name are specified by the user, the Wizard
will select required pins and pins that may have combined use. After all selections
are made, the initial .c and .h files are created with #defines, #includes and
initialization commands required for the project.

Create Create a new project with the ability to add/remove source files, include files, global
defines and specify output files.

Open Open all files in a project so that all include files become known for compilation.
All

Files

Close Close all files associated with project.

Project

Find Ability to search all files for specific text string.

Text in

Project

Overview

Edit Menu Ribbon

(D' Nyjedt [t Sewth Oplem Compie View Tools Oebey Cotswent User Toof B

s ~ & — -y - 2= ' ’ ‘f’“""

wéo N ot Leov ;Tﬁ e u::m o A Mgu e “ 3,':,’,
Undo Undoes the last deletion
Redo Re-does the last undo
Cut Moves the selected text from the file to the clipboard.
Copy Copies the selected text to the clipboard.
Paste Applies the clipboard contents to the cursor location.
Unindent Selected area of code will not be indented.
Selection
Indent Selected area of code will be properly indented.
Selection
Select All Highlighting of all text.
Copy Copies the contents of a file to the cursor location.
from File
Past to Applies the selected text to a file.
File
Macros Macros for recording, saving and loading keystrokes and mouse-strokes.
Search Menu Ribbon
© pow CEX
®' Moject Boe | Scerth | Opbiswm Creprke Wiee Teols Debeg Docwmest UserToot Bar ‘f o

e 2| fln Sonses = > X
Dot e o [FJ00reCase cegin rorwwd v 35@: ' & T Lnt. l:le GE;)
Teacch todals

Find Locate text in file.

Find Text Searches all files in project for specific text string.
in Project

TEST PCD

Find Next
Word at
Cursor

Goto Line

Toggle
Bookmark

Goto
Bookmark

Locates the next occurrence of the text selected in the file.

Cursor will move to the user specified line number.

Set/Remove bookmark (0-9) at the cursor location.

Move cursor to the specified bookmark (0-9).

Options Menu Ribbon

S Pow

@’ Preject Bot Semch | Opbew

5Jt~:)«-.cv:m [@ttt Prepntin. g Tacls

4‘% ’i:::‘.__:fr‘ \'me.. S

Project
Options

Editor
Properties

Tools

Software
Updates
Properties

Printer
Setup
Toolbar
Setup

File
Associations

g

Corpre Wiew Teols Debag Oocwment UserTook Bae

-~
2 Ma Associatons v

(o

[Erasne- T Tiaud ¥ Yolon

[(opactic ba Law

plare

Add/remove files, include files, global defines and output files.

Allows user to define the set-up of editor properties for Windows options.

Window display of User Defined Tools and options to add and apply.

Ability for user to select which software to update, frequency to remind
Properties user and where to archive files.

Set the printer port and paper and other properties for printing.

Customize the toolbar properties to add/remove icons and keyboard
commands.

Customize the settings for files according to software being used.

Overview

Compile Menu Ribbon

< pow (g3
®‘ Pofect Bt Sewch Ogbow | Czrolk Wiee Teols Debag Docwmest UserTook Sur ‘{ o
0 P & — - — . —
B 2= @ K. L F £ 0
Gongle B askapiar Bagnm e CasM U Bebaimp CelIree Sghate '

oo
Comple Twot G Viww Cutpes P

Compile Compiles the current project in status bar using the current compiler.
Build Compiles one or more files within a project.

Compiler Pull-down menu to choose the compiler needed.

Lookup Choose a device and the compiler needed will automatically be selected.

Part

Program Lists the options of CCS ICD or Mach X programmers and will connect to SIOW
Chip program.

Debug Allows for input of .hex and will output .asm for debugging.

C/IASM Opens listing file in read-only mode. Will show each C source line code and the
List associated assembly code generated.

Symbol Opens the symbol file in read-only mode. Symbol map shows each register

Map location and what program variable are saved in each location.

Call Opens the tree file in read-only mode. The call tree shows each function and what
Tree functions it calls along with the ROM and RAM usage for each.

Statistics Opens the statistics file in read-only mode. The statistics file shows each function,
the ROM and RAM usage by file, segment and name.

Debug Opens the debug file in read-only mode. The listing file shows each C source line
File code and the associated assembly code generated.

View Menu Ribbon

¢ —a
LW LE_
®' Moject BAt Sewch Ogbiswm Crepre | Viow| Teols Debeg Docwmest UserToot Bar ‘{ o
.F " - - - - p—
S (2 = Cloveat [E)ropcrfies L& | oehedn
vake e Sg0 9 Adsrater List] Promet List Naw £ A
Pevoes Vel e Dslatheet = frrid v

Wrcows

Valid This displays a list of valid interrupts used with the #INT_keyword for the chip
Interrupts used in the current project. The interrupts for other chips can be viewed using the

TEST PCD

drop down menu.

Valid This displays a list of valid FUSE used with the #FUSES directive associated
Fuses with the chip used in the current project. The fuses for other chips can be viewed
using the drop down menu.

Data This tool is used to view the Manufacturer data sheets for all the Microchip parts
Sheets supported by the compiler.

Part This allows user to view the errata database to see what errata is associated with
Errata a part and if the compiler has compensated for the problem.

Special This displays the special function registers associated with the part.

Registers

New Edit This will open a new edit window which can be tiled to view files side by side.
Window

Dock Selecting this checkbox will dock the editor window into the IDE.

Editor

Window

Project When this checkbox is selected, the Project files slide out tab is displayed. This
Files will allow quicker access to all the project source files and output files.

Project Selecting this checkbox displays the Project slide out tab. The Project slide out
List tab displays all the recent project files.

Output Selecting this checkbox will enable the display of warning and error messages

generated by the compiler.

Identifier Selecting this checkbox displays the Identifier slide out tab. It allows quick access
List to project identifiers like functions, types, variables and defines.

Tools Menu Ribbon
< PO LE X
@‘ Project Bde Somch Ogbow Comprk Wiow | Too's Debeg Docwment UserTook Bar ‘1 i

4 « | - a 1A 1014 o
& o }‘ __J Yy 2 G S
e Dpele . woeic Sualren , MOV Conmiecr Pynitcy "ROX it
RevkeBIt cloqey DICTEOSFE Cvene Cmownay DSsmentle g te

Device Editor This tool is used to edit the device database used by the compiler to control
compilations. The user can edit the chip memory, interrupts, fuses and other
peripheral settings for all the supported devices.

Device
Selector

File Compare

Numeric
Converter

Serial Port
Monitor

Disassembler

Convert Data
toC

Extract
Calibration

MACH X

ICD

Overview

This tool uses the device database to allow for parametric selection of
devices. The tool displays all eligible devices based on the selection criteria.

This utility is used to compare two files. Source or text files can be compared
line by line and list files can be compared by ignoring the RAM/ROM
addresses to make the comparisons more meaningful.

This utility can be used to convert data between different formats. The user
can simultaneously view data in various formats like binary, hex, IEEE,
signed and unsigned.

This tool is an easy way of connecting a PIC to a serial port. Data can be
viewed in ASCII or hex format. An entire hex file can be transmitted to the
PIC which is useful for bootloading application.

This tool will take an input hex file and output an ASM.

This utility will input data from a text file and generate code is form of a
#ROM or CONST statement.

This tool will input a hex file and extract the calibration data to a C include
file. This feature is useful for saving calibration data stored at top of program
memory from certain PIC chips.

This will call the Mach-X.exe program and will download the hex file for the
current project onto the chip.

This will call the ICD.exe program and will download the hex file for the
current project onto the chip.

Debug Menu Ribbon

@‘ Progect Boe Sesch Opbow Crmprk Wiew Teels | Debo Oocwmest UserToof Bur ‘1 b

2 03 QN AR 2
Enable Enables the debugger. Opens the debugger window, downloads the code and
Debugger on-chip debugger and resets the target into the debugger.
Reset This will reset the target into the debugger.
Single Executes one source code line at a time. A single line of C source code or ASM
Step code is executed depending on whether the source code or the list file tab in the

editor is active.

TEST PCD

Step This steps over the target code. It is useful for stepping over function calls.

Over

Run to Runs the target code to the cursor. Place the cursor at the desired location in the
Cursor code and click on this button to execute the code till that address.

Snapshot This allows users to record various debugging information. Debug information
like watches, ram values, data eeprom values, rom values , peripheral status can
be conveniently logged. This log can be saved, printed, overwritten or appended.

Run This tool allows the IDE's integrated debugger to execute a C-style script. The
Script functions and variable of the program can be accesses and the debugger
creates a report of the results.

Debug This drop down menu allows viewing of a particular debug tab. Click on the tab
Windows name in the drop down list which you want to view and it will bring up that tab in
the debugger window.

Document Menu Ribbon
@' Project B Somch Opbow Comprk Wiew Teels Debag Cocsmewt UserTook Bar ‘1 o

A - : 1w =]

- Gemae s
EOE SO0 et Quates Cerwmevs Povt 2 Ales
Format This utility formats the source file for indenting, color syntax highlighting, and
Source other formatting options.
Generate This will call the document generator program which uses a user generated

Document template in .RTF format to merge with comment from the source code to
produce an output file in .RTF format as source code documentation.

RTF Editor ~ Open the RTF editor program which is a fully featured RTF editor to make
integration of documentation into your project easier.

Flow Chart Opens a flow chart program for quick and easy charting. This tool can be used
to generate simple graphics including schematics.

Quotes Performs a spell check on all the words within quotes.
Comments Performs a spell check on all the comments in your source code.

Print all Print all the files of the current project.
Files

Help Menu

Overview

Click on this icon for the following items:

¢

Contents
Index

Keyword at
Cursor

Debugger
Help

Editor

Data Types
Operators
Statements

Preprocessor
Commands

Built-in
Functions

Technical
Support

Check for
Software
Updates

Internet

About

Help File table of contents
Help File index

Index search in Help File for the keyword at the cursor location. Press F1 to
use this feature.

Help File specific to debugger functionality.

Lists the Editor Keys available for use in PCW. Shft+F12 will also call this
function help file page for quick review.

Specific Help File page for basic data types.
Specific Help File page for table of operators that may be used in PCW.
Specific Help File page for table of commonly used statements.

Specific Help File page for listing of commonly used preprocessor
commands.

Specific Help File page for listing of commonly used built-in functions
provided by the compiler.

Technical Support wizard to directly contact Technical Support via email and
the ability to attach files.

Automatically invokes Download Manager to view local and current versions
of software.

Direct links to specific CCS website pages for additional information.

Shows the version of compiler(s) and IDE installed.

TEST PCD

Technical Support

Compiler, software, and driver updates are available to download at:
http://www.ccsinfo.com/download

Compilers come with 30 or 60 days of download rights with the initial purchase. One year
maintenance plans may be purchased for access to updates as released.

The intent of new releases is to provide up-to-date support with greater ease of use and minimal, if
any, transition difficulty.

To ensure any problem that may occur is corrected quickly and diligently, it is recommended to
send an email to "x-text-underline: normal; support@ccsinfo.com or use the Technical Support
Wizard in PCW. Include the version of the compiler, an outline of the problem and attach any files
with the email request. CCS strives to answer technical support timely and thoroughly.

Technical Support is available by phone during business hours for urgent needs or if email
responses are not adequate. Please call 262-522-6500 x32.

Directories

The compiler will search the following directories for Include files.
o Directories listed on the command line
o Directories specified in the .PJT file
° The same directory as the source file

By default, the compiler files are put in C:\Program Files\PICC and the example programs and all
Include files are in C:\Program Files\PICC\EXAMPLES.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in C:\Program
Files\PICC\DLL. Old compiler versions may be kept by renaming this directory.

Compiler Version 4 and above can tolerate two compilers of different versions in the same
directory. Install an older version (4.xx) and rename the devices4.dat file to devices4X.dat where X
is B for PCB, M is for PCM, and H is for PCH. Install the newer compiler and do the same rename
of the devices4.dat file.

File Formats

.C This is the source file containing user C source code.

H These are standard or custom header files used to define pins, register, register
bits, functions and preprocessor directives.

PIT This is the project file which contains information related to the project.

10

http://www.ccsinfo.com/download.shtml

Overview

.LST This is the listing file which shows each C source line and the associated assembly
code generated for that line.

The elements in the .LST file may be selected in PCW under Options>Project
Options>File Formats

Match -Includes the HEX opcode for each instruction
code
SFR -Instead of an address a name is used. For example instead of
names 044 is will show CORCON
Symbols -Shows variable names instead of addresses
Interpret -Adds a pseudo code interpretation to the right of assembly
instruction to help understand the operation.
For example:
LSR W4, #8,W5 : W5=W4>>8
.SYM This is the symbol map which shows each register location and what program
variables are stored in each location.
.STA The statistics file shows the RAM, ROM, and STACK usage. It provides information

on the source codes structural and textual complexities using Halstead and
McCabe metrics.

.TRE The tree file shows the call tree. It details each function and what functions it calls
along with the ROM and RAM usage for each function.

.HEX The compiler generates standard HEX files that are compatible with all
programmers.

.COF This is a binary containing machine code and debugging information.

.COD This is a binary file containing debug information.

.RTF The output of the Documentation Generator is exported in a Rich Text File format
which can be viewed using the RTF editor or wordpad.

.RVF The Rich View Format is used by the RTF Editor within the IDE to view the Rich
Text File.

.DGR The .DGR file is the output of the flowchart maker.

.ESYM This file is generated for the IDE users. The file contains Identifiers and Comment
information. This data can be used for automatic documentation generation and for
the IDE helpers.

.OSYM This file is generated when the compiler is set to export a relocatable object file.
This file is a .sym file for just the one unit.

Invoking the Command Line Compiler

The command line compiler is invoked with the following command:

CCsC [options] [cfilename]
Valid options:
+FB Select PCB (12 bit) -D Do not create debug file
+FM Select PCM (14 bit) +DS Standard .COD format debug file

11

TEST PCD

+FH Select PCH (PIC18XXX) +DM .MAP format debug file

+Yx Optimization level x (0-9) +DC Expanded .COD format debug file
+FS Select SXC (SX) +EO Old error file format

+ES Standard error file -T Do not generate a tree file

+T Create call tree (.TRE) -A Do not create stats file (.STA)

+A Create stats file (.STA) -EW Suppress warnings (use with +EA)
+EW Show warning messages -E Only show first error

+EA Show all error messages and all +EX Error/warning message format uses

warnings

GCC's "brief format" (compatible with
GCC editor environments)

+FD Select PCD (dsPIC30/dsPIC33/PIC24) +DF Enables the output of an OFF debug

The xxx in the fol
+LNXxx

+LSxxx

+LOXXX

+LY XXX

-L

+P
+Pxx
+PN
+PE

+Z
+DF
="

+ICD
HXXX="Yyy"

+Gxxx="yyy
+?

12

file.

lowing are optional. If included it sets the file extension:

Normal list file +0O8xxx 8-bit Intel HEX output file
MPASM format list file +OW XXX 16-bit Intel HEX output file
Old MPASM list file +OBxXxx Binary output file
Symbolic list file -0 Do not create object file

Do not create list file

Keep compile status window up after compile

Keep status window up for xx seconds after compile
Keep status window up only if there are no errors
Keep status window up only if there are errors

Keep scratch files on disk after compile
COFF Debug file
Same as I="..." Except the path list is appended to the current list

Set include directory search path, for example:
I="c:\picc\examples;c:\picc\myincludes"

If no I= appears on the command line the .PJT file will be used to supply the
include file paths.

Close compile window after compile is complete

Generate a symbol file (.SYM)

Do not create symbol file

Create a project file (.PJT)

Do not create PJT file

Compile for use with an ICD

Set a global #define for id xxx with a value of yyy, example:
#debug="true"

Same as #xxx="yyy"
Brings up a help file

Overview

-? Same as +?

+STDOUT Outputs errors to STDOUT (for use with third party editors)

+SETUP Install CCSC into MPLAB (no compile is done)

sourceline= Allows a source line to be injected at the start of the source file.
Example: CCSC +FM myfile.c sourceline=“#include <16F887.h>"

+V Show compiler version (no compile is done)

+Q Show all valid devices in database (no compile is done)

A / character may be used in place of a + character. The default options are as follows:
+FM +ES +J +DC +Y9 -T -A +M +LNIst +O8hex -P -Z

If @filename appears on the CCSC command line, command line options will be read from the
specified file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE, then command line parameters are

read from that file before they are processed on the command line.

Examples:
CCSC +FM C:\PICSTUFF\TEST.C
CCSC +FM +P +T TEST.C

13

PROGRAM SYNTAX

Voo
e

Overall Structure

A program is made up of the following four elements in a file:

Comment

Pre-Processor Directive

Data Definition

Function Definition

Every C program must contain a main function which is the starting point of the program execution.
The program can be split into multiple functions according to the their purpose and the functions
could be called from main or the subfunctions. In a large project functions can also be placed in
different C files or header files that can be included in the main C file to group the related functions
by their category. CCS C also requires to include the appropriate device file using #include
directive to include the device specific functionality. There are also some preprocessor directives
like #fuses to specify the fuses for the chip and #use delay to specify the clock speed. The
functions contain the data declarations,definitions,statements and expressions. The compiler also
provides a large number of standard C libraries as well as other device drivers that can be included
and used in the programs. CCS also provides a large number of built-in functions to access the
various peripherals included in the PIC microcontroller.

C Compiler

Comment

Comments — Standard Comments
A comment may appear anywhere within a file except within a quoted string. Characters between /*
and */ are ignored. Characters after a // up to the end of the line are ignored.

Comments for Documentation Generator-

The compiler recognizes comments in the source code based on certain markups. The compiler
recognizes these special types of comments that can be later exported for use in the
documentation generator. The documentation generator utility uses a user selectable template to
export these comments and create a formatted output document in Rich Text File Format. This
utility is only available in the IDE version of the compiler. The source code markups are as follows.

Global Comments — These are named comments that appear at the top of your source code. The
comment names are case sensitive and they must match the case used in the documentation
template.

For example:

/I*PURPOSE This program implements a Bootloader.

/I*AUTHOR John Doe

A/l followed by an * will tell the compiler that the keyword which follows it will be the named
comment. The actual comment that follows it will be exported as a paragraph to the documentation
generator.

15

TEST PCD

Multiple line comments can be specified by adding a : after the *, so the compiler will not
concatenate the comments that follow. For example:
/**:CHANGES
05/16/06 Added PWM loop
05/27.06 Fixed Flashing problem
*/

Variable Comments — A variable comment is a comment that appears immediately after a variable
declaration. For example:

int seconds; // Number of seconds since last entry

long day, // Current day of the month

int month, /* Current Month */

long year; // Year

Function Comments — A function comment is a comment that appears just before a function
declaration. For example:

/I The following function initializes outputs

void function_foo()

init_outputs();

Function Named Comments — The named comments can be used for functions in a similar manner
to the Global Comments. These comments appear before the function, and the names are
exported as-is to the documentation generator.
For example:
/I*PURPOSE This function displays data in BCD format

void display_BCD(byte n)

display_routine();

Trigraph Sequences

The compiler accepts three character sequences instead of some special characters not available
on all keyboards as follows:

Sequence Same as

??= #

22(
22/
??)
??'

?27<
22!

27>
??-

| — e > —

16

Program Syntax

Multiple Project Files

When there are multiple files in a project they can all be included using the #include in the main file
or the subfiles to use the automatic linker included in the compiler. All the header files, standard
libraries and driver files can be included using this method to automatically link them.

For example: if you have main.c, x.c, X.h, y.c,y.h and z.c and z.h files in your project, you can say
in:

main.c #include #include <x.c> #include <y.c> #include <z.c>
<device header
file>

X.C #include <x.h>

y.c #include <y.h>

z.c #include <z.h>

In this example there are 8 files and one compilation unit. Main.c is the only file compiled.

Note that the #module directive can be used in any include file to limit the visibility of the symbol in
that file.

To separately compile your files see the section "multiple compilation units".

Multiple Compilation Units

Traditionally, the CCS C compiler used only one compilation unit and multiple files were
implemented with #include files. When using multiple compilation units, care must be given that
pre-processor commands that control the compilation are compatible across all units. Itis
recommended that directives such as #FUSES, #USE and the device header file all putin an
include file included by all units. When a unit is compiled it will output a relocatable object file (*.0)
and symbol file (*.osym).

The following is an overview of a multiple compilation unit example. For the example used here,
see the MCU.zip in the examples directory.

Files Included in Project Example:

main.c Primary file for the first compilation unit.

filter.c Primary file for the second compilation unit.

report.c Primary file for the third compilation unit.

project.h Include file with project wide definitions that should be included by all units.
filter.h Include file with external definitions for filter that should be included by all units

that use the filter unit.

17

TEST PCD

report.h Include file with external definitions for report that should be included by all units
that use the report unit.

project.c Import file used to list the units in the project for the linker.bat file.

project.pjt Project file used to list the units in the project for the build.bat file.

build.bat Batch file that re-compiles files that need compiling and linking.

buildall.bat Batch file that compiles and links all units.

linker.bat Batch file that compiles and links all units using a script.

File Overview:

main

#include:
project.h
filter.h
report.h

Definitions:
main () program

Uses:
clear data()
filter data()
report data line()
report line number

filter

#include:
project.h
report.h

Public Definitions:

clear data()
filter data()

Uses:
report error ()

report
#include:
project.h

Public Definitions:
report data line()
report line number
report error ()

Compilation Files:

*.0 Relocatable object file that is generated by each unit.
*.err Error file that is generated by each unit.

*.0sym Unit symbol file that is generated by each unit.
project.hex Final load image file generated by the project.
project.lst C and ASM listing file generated by the project.
project.sym Project symbols file generated by the project.
project.cof Debugger file generated by the project.

Using Command-Line to Build a Project:

Move all of the source files for the project into a single directory.

Using a text editor, create the file buildall.bat, based off of the following example in order to compile

the files and build the project.

- The path should point to the CCSC.exe file in the PIC-C installation directory.
- Add any additional compiler options.
- Use the EXPORT option to include the necessary *.c files.
- Use the LINK option to generate a *.hex file.

18

Program Syntax

EBuildaltbat = Notepad
File Edit Format ‘Wiew Help

"CivProgram Filesh\PICCHWCCSC. exe” +FM +EXFORT report.c

"CrwProgram FileshPICCHWCCSC. exe” +FM +EXPORT filter.c

"CinProgram FileshPICCHWCCSC, exe” +FM +EXPORT main.

"CiwProgram FileshPICCHWCCSC, exe” +FM LIMK="project.hex=report.o,filter.o,main.o"”

Double-click on the buildall.bat file created earlier or use a command prompt by changing the
default directory to the project directory. Then use the command BUILDALL to build the project
using all of the files.

Using Command Line to Re-Build Changed Files in a Project:

Using a text editor, create the file project.pjt based off of the following example in order to include
the files that need to be linked for the project.

IC' project. pjt'= Notepad

File Edit Format ‘Wiew Help

[units]
Count=3
l=report.o
Z2=filter.o
3=main.o
Link=1

Using a text editor, create the file build.bat based off of the following example in order to compile
only the files that changed and re-build the project.

- The path should point to the CCSC.exe file in the PIC-C installation directory.

- Add any additional compiler options.

- Use the BUILD option to specify the *.pjt file.

E BTt hat - Notepad
File Edit Format ‘Wiew Help

"CiwPraogram FileshPICCHWICSC. exe” +FM BUILD=project.pit

19

TEST PCD

Double-click on the build.bat file created earlier or use a command prompt by changing the default
directory to the project directory and then use the command BUILD to re-build the project using
only the necessary files that changed.

Using a Linker Script:
Using a text editor, create the file project.c based off of the following example in order to include the
files that need to be linked for the project.

\ 1 H
(project.c - Notepad i w

File Edit Format ‘Wiew Help
#import (FILE:r‘e%uurt. ol
#import (FILE=T1lter.o)
#import (FILE=main. o)

Using a text editor, create the file linker.bat based off of the following example in order to compile
the files and build the project.

- The path should point to the CCSC.exe file in the PIC-C installation directory.

- Add any additional compiler options.

- Use the EXPORT option to include the necessary *.c files.

- The LINK option is replaced with the *.c file containing the #import commands.

: —
E‘ linker. bat™="Notepad =] E w

File Edit Format View Help

"CiwProgram FileshPICCHWCCSC, exe” +FM +EXPORT report. o
“CrvProgram FileshPICCWICSC, exe” +FM +EXPORT filter.c
“CrvPraogram FileshPICCWICSC, exe” +FM +EXPORT main.
"CiwPragram FileshPICCWICSC. exe” +FM project.c

Double-click on the linker.bat file created earlier or use a command prompt by changing the default
directory to the project directory and then use the command LINKER to build the project using all of
the files.

Using the CCS PCW IDE with Multiple Compilation Units:

Open the PCW IDE and select the Project tab in the ribbon along the top of the main window or in
the menu bar if the IDE view style has been changed, then select the Create option. A window will
be displayed asking to select the main source file of the project.

20

Program Syntax

[T

@J Project | Edit Search Options Compile Wiew Tools Debug Document UserToolbar

T3 02 0 & 0

-) N - . Find Textin Make File
Project PIC Wizard 24 Bit Wizard| Create |Open All Files Close Project Files Project

Project Cpkions

After selecting the main source file the Project Options window will appear. In this window, select
the type of chip being used in the project. Then, check the boxes next to the Multiple Compilation
Units and Link Separately options. This will allow additional source files to be added. Click the
Add button and select the other source files used in the project to add them to the list. Click the
Apply button to create the project.

Pru]El:t Options ? 1

Target: PICIEFET7A M [#] Multiple Compilation Units
Link Separately

Source Files: [4= add | | = Remove |

Ci\Program Files\PICC\Projecks\MCU main, o
C\Program Files\PICCProjectsi\MCUN report,
CiYProgram Files\PICC\Projecks\MCUYFilker . c

Include Files

Global Defines

=

|
OutputFiles Project Filename C:%Program Files\PICCYProjects\MCL smain. pit L]

[Make these settings the default for new projects Apply

To compile the files in a project and build the project itself, select either the Compile tab in the
ribbon along the top of the main window, in the menu bar if the IDE view style has been changed,
or right-click on the files in the Files pane along the left side of the editor window.

- Compile: Compiles all the units in the current project or a single unit selected from the

drop-down menu.

- Build: Compiles units that have changed since the last compile and rebuilds the project.

21

TEST PCD

- Build All: Compiles all the units and builds the project.
- Clean: Deletes the output files for the project.

(D.' Project Edit Search Options Compile View Tools Debug Document UserToolbar

;1 v % ’1 :L,r/ PCM 14 bt M % ﬁ . L.—_-;-:

Compile Build Build All Clean Lookup Part Er‘l’:ﬂir;m " Debug C/ASM List

project.h”
= (& main report.h
= |“‘.F"' Source filter.h™
= main

mainc |stdlib. h-
report.c |input. o

| siaynuspl 5 | | s:pa_[o,ldg FE

filter.c

= report g report_line number;
repork.c

= filker woid) |
filtker.c |ta:

(= Oukput

|“"F"' Documentation |1ine nuwber = 0:

clear () :

After a file has been compiled, the files used during the compilation will appear under the unit's
name in the Files pane.

Using the MPLAB IDE with Multiple Compilation Units:

Open the MPLAB IDE, select the Project tab in the menu bar and select the New option. A window
will be displayed asking to select the main source file of the project.

22

Program Syntax

I Hew Project

Froject Mame

|MELI |

Froject Directon

|E:'xF'ru:ugram FilezhMicrochipsProjectzi\k CLI | I Browsze. .. I

(] 4] [Cancel]

Select the Project tab in the menu bar and select the Select Language Toolsuite option. A window
will be displayed, select the CCS C Compiler from the drop-down list in the Active Toolsuite field.
Make sure the correct directory location is displayed for the compiler.

ISelect Language Toolsaite

Active Toolsuite: CCS C Compiler for PIC1012/14/16/18/24/d:PIC30/dsPIC33 M

T oolzuite Contents

|:|_":; |_: |_:|'|r|'| |i|Ee[|.|::|:::E:|::_E:-:Ee.

Lacation

|E:'xF'rc'gram filezhPicchCCSC exe | [Browse. ..]

Stare tool lozations in project

I 1]8 I [Cancel]

Select the Configure tab in the menu bar and select the Select Device option. A window will be
displayed, select the correct PIC from the list provided.

23

TEST PCD

SEIEl:t levice 1

Device: Device Family:

PIC1BFETTA M ALL M

Microchip Tool Suppaort

Frogrammers

i@ PICSTART Flus i@y MPLABREALICE {@ PICKit1
i@y PROMATE Il i@ MPLAB ICD 2 i@ PICKit 2
i@ MPLAB PM3 i@ MPLABICD 3 i@ PICKit3

Language and Design Tools

iy ASSEMBLER @ COMPILER @ Ol

w390
Debugoers
i@ MPLAB SIn i@ MPLABICD 2 i@ PICKt 2
iy MPLAB REALICE {3 MPLABICD 3 i@ PICKit3

MPLAB ICE 2000 MPLAB ICE 4000 ICENCD Headers

i P Ch B @ Mo Module @ Mo Header
I (]34 I [cancel] [Help

Add source files to the project by either selecting the Project tab in the menu bar and then the Add
File to Project option or by right-clicking on the Source Files folder in the project window and
selecting Add Files. A window will be displayed, select the source files to add to the project.

24

Add Files toProject

Lok jr: | I MCU

[Cficer.c|
Z] Filker b
&l
IE] project.h
Clreport.c

IE] repart.h

| I Open I
M [Cancel]

| C:%Program Filez'\MicrochiphProjectsh, M

File name: | "mairn.c’ report.c’ ilker. o

Filez of bype: |ﬁll Source Files [*.c;" k]

Jurnp b

[] Remember this setting

(%) Auto; Let MPLAE IDE guess
() Uzer: File[z] were created especially for this project, uze relative path
() Systemn: File(s] are external to project, use absolute path

Program Syntax

Select the Project tab in the menu bar and select Build Options. This will allow changes to be
made to the output directory, include directories, output files generated, etc for the entire project or

just individual units.

25

TEST PCD

Build" Options For Project “MCU. mcp®

Categaries: Lieneral M

Generate Cormmand Line

List File Debug

(%) Mormal CCS format (i Mone

) MPASM format () Expanded COD format
() Symbolic format {®) COFF format

Other Filez Device Family

Call tree (O PCE-12Bit

Statistics file O PCM - 14Bit

S ymbal file (O PCH - Pic18

S how W amings () PCOSP - dsPIC

[] Compile for use with ICD Debugger

Help] [Restore Defaulks

+DF +LN +T +& +M Z +7=9 +E4

[]Usze slemate Settings

I OF. I [Cancel

To compile the files in a project and build the project itself, select either the Project tab in the menu
bar or right-click on the files in the Project window.
- Compile: Compiles the selected unit and will not re-link the project after compilation.
- Make: Compiles units that have changed since the last compile and rebuilds the project.
- Build All: Compiles all the units, deletes intermediate files, and builds the project.
- Clean: Deletes the output files for the project.

26

Program Syntax

MCD=MPLABTIDE v~ 453 - MCD . mow
File Edit Wiew HE Debugger Programmer Tools Configure Window Help

J DE | Project ‘Wizard... = | ®
Mew,.,
Open...
Close
Sek Active Project

=z 3 MCu.mcp
CQuickbuild {no .asm File) E|[:| Source Files

Package in .zip

Build Al [Header Fils gyjid options. .
£S5 C Help 123 obiect File
Biild Canfiquration 123 cther Files Edit

Build Options. .. Remive
External DIFF. ..

Save Praject Is i3enerated

Save Project As... Locate Missing File
add Files to Project...

add MNew File to Project. .,
Remave File From Project

Select Language Toolsuite. ..
Set Language Tool Locations. ..
Wersion Contral. .

[Files |‘9[: Symbolsl

Additional Note: If there is only one source file in the project, it will be compiled and linked in one
step, a *.o file will not be created. A *.o file, that has already been compiled can be added to the
project and linked during the make / build process.

Additional Notes:

To make a variable or function private to a single unit, use the keyword static. By default, variables
declared outside a function at the unit level are visible to all other units in the project. If the static
keyword is used on a function or variable that is accessed outside of the local unit, a link time error
will occur.

If two units have a function or a unit level variable of the same name, an error will occur unless one
of the following conditions is true:
- The identifier is qualified with the keyword static.

27

TEST PCD

- The argument list is different for both functions, allowing them to co-exist according to
normal overload rules.

- The contents of the functions are identical, such as when the same *.h file is included in
multiple files, then the linker will delete the duplicate functions.

For a project with multiple compilation units, it is best to include a file such as project.h which
includes the #includes, #defines, pre-processor directives, and any other compiler settings that are
the same for all the units in a project.

When a setting such as a pre-processor directive is included in the main include file between the
units, a library is created in each of the units. The linker is able to determine that the libraries are
duplicates and removes them during the final linking process.

When building a project, each unit being used in the project has its own error file. When using a
* bat file to do the unit compilations, it may be useful to terminate the process on the first error.
Using the +CC command option, the compiler will return an error code if the compilation fails.

Example
Here is a sample program with explanation using CCS C to read adc samples over rs232:

L1117 7770077777777 7777777777777 7777777777777777777777
/// This program displays the min and max of 30, /77
/// comments that explains what the program does, ///
/// and A/D samples over the RS-232 interface. /17
L1117 070777777777 777777777777777777777777777777777

#if defined(PCM)

// preprocessor directive that chooses the compiler
#include <16F877.h>

// preprocessor directive that selects the chip PIC16F877
#fuses HS,NOWDT, NOPROTECT, NOLVP

// preprocessor directive that defines fuses for the chip

#use delay(clock=20000000)

// preprocessor directive that specifies the clock speed
#use rs232 (baud=9600, xmit=PIN C6, rcv=PIN C7)

// preprocessor directive that includes the rs232 libraries
#elif defined(PCH)

// same as above but for the PCH compiler and PIC18F452
#include <18F452.h>
#fuses HS,NOWDT, NOPROTECT, NOLVP
#use delay(clock=20000000)
#use rs232 (baud=9600, xmit=PIN C6, rcv=PIN C7)

#endif
void main() { // main function
int i, value, min, max; // local variable declaration

printf ("Sampling:");
// printf function included in the RS232 library

28

Program Syntax

setup port a(ALL ANALOG); // A/D setup functions- built-
in
setup adc(ADC_CLOCK INTERNAL) ; // A/D setup functions- built-
in
set _adc channel(0); // A/D setup functions- built-
in
do { // do while statement
min=255; // expression
max=0;
for (i=0; i<=30; ++i) { // for statement
delay ms(100); // delay built-in function
call
value = Read ADC(); // A/D read functions- built-
in
if (value<min) // if statement
min=value;
if (value>max) // 1if statement

max=value;

}
printf ("\n\rMin: %2X Max: %2X\n\r",min,max) ;
} while (TRUE);

29

STATEMENTS

Voo
e

Statements

C Compiler

STATEMENT

if (expr) stmt; [else stmt;]

if (x==25)
x=1;

else
x=x+1;

while (expr) stmt;

while (get rtcc() !=0)
putc('n’);

do stmt while (expr);

do {
putc (c=getc())
} while (c!=0);

for (exprl;expr2;expr3) stmt;

for (i=1;1i<=10;++1)
printf (“su\r\n”,1i);

switch (expr) {

switch (cmd) {

case cexpr: stmt; //one or more case case 0: printf(“cmd 07);
[default:stmt] break;
o case 1l: priintf(“cmd 1”);
break;
default: printf (“bad cmd”);
break; }
return [expr]; return (5);
goto label; goto loop;
label: stmt; loop: I++;
break; break;
continue; continue;
expr; i=1;
{[stmt]} {a=1;
b=1;}

Zero or more

Note: Itemsin [] are optional

31

TEST PCD

i f
if-else
The if-else statement is used to make decisions.
The syntax is:
if (expr)
stmt-1;
[else
stmt-2;]

The expression is evaluated; if it is true stmt-1 is done. If it is false then stmt-2 is done.

else-if
This is used to make multi-way decisions.
The syntax is:
if (expr)
stmt;
[else if (expr)
stmt;]
[else
stmt;]
The expression's are evaluated in order; if any expression is true, the statement associated with it

is executed and it terminates the chain. If none of the conditions are satisfied the last else part is
executed.

Example:
if (x==25)
x=1;
else
x=x+1;
Also See: Statements

while

While is used as a loop/iteration statement.
The syntax is
while (expr)

statement

The expression is evaluated and the statement is executed until it becomes false in which case the
execution continues after the statement.

Example:
while (get rtcc() !=0)
putc('n');

Also See: Statements

32

STATEMENTS

do

Statement: do stmt while (expr);

Example:
do {

putc (c=getc());
} while (c!=0);

Also See: Statements , While

do-while

It differs from While and For loop in that the termination condition is checked at the bottom of the
loop rather than at the top and so the body of the loop is always executed at least once. The syntax
is

do
statement
while (expr);

The statement is executed; the expr is evaluated. If true, the same is repeated and when it
becomes false the loop terminates.

Also See: Statements , While

for

For is also used as a loop/iteration statement.
The syntax is

for (expril;expr2;expr3)
statement

The expressions are loop control statements. exprl is the initialization, expr2 is the termination
check and expr3 is re-initialization. Any of them can be omitted.

Example:
for (i=1;i<=10;++1)

printf ("$u\r\n",1);

Also See: Statements

33

TEST PCD

switch

Switch is also a special multi-way decision maker.
The syntax is

switch (expr) {
case constl: stmt sequence;
break;

[d efault:stmt]

This tests whether the expression matches one of the constant values and branches accordingly.
If none of the cases are satisfied the default case is executed. The break causes an immediate exit,
otherwise control falls through to the next case.

Example:
switch (cmd) {
case O:printf("cmd 0");

break;
case l:printf("cmd 1");
break;
default:printf ("bad cmd");
break; }

Also See: Statements

return

Statement: return [expr];
A return statement allows an immediate exit from a switch or a loop or function and also returns a
value.

The syntax is
return(expr);

Example:
return (5);

Also See: Statements

34

STATEMENTS

goto

Statement: goto label;
The goto statement cause an unconditional branch to the label.

The syntax is

goto label;
A label has the same form as a variable name, and is followed by a colon. The goto's
are used sparingly, if at all.

Example:
goto loop;

Also See: Statements

label

Statement: label: stmt;

Example:
loop: i++;

Also See: Statements

break

Statement: break;
The break statement is used to exit out of a control loop. It provides an early exit from
while, for ,do and switch.
The syntax is
break;
It causes the innermost enclosing loop(or switch) to be exited immediately.

Example:
break;

Also See: Statements

35

TEST PCD

continue

Statement: continue;

The continue statement causes the next iteration of the enclosing loop(While, For,
Do) to begin.

The syntax is

continue;

It causes the test part to be executed immediately in case of do and while and the
control passes the re-initialization step in case of for.

Example:
continue;

Also See: Statements

expr
Statement: expr;
Example:

i=1;
Also See: Statements

Statement: ;
Example:

Also See: Statements

stmt

Statement: {[stmt]}

Zero or more semi colon separated
Example:

{a=1;

b=1;}
Also See: Statements

36

EXPRESSIONS

Voo
e

Expressions

C Compiler

Constants:

123 Decimal

0123 Octal

0x123 Hex

0b010010 Binary

X' Character

\010' Octal Character

\XA5’ Hex Character

\c' Special Character. Where c is one of:
\n Line Feed - Same as \x0a
\r Return Feed - Same as \x0d
\t TAB - Same as \x09
\b Backspace - Same as \x08
\f Form Feed - Same as x0c
\a Bell - Same as \x07
\v Vertical Space - Same as \x0Ob
\? Question Mark - Same as \x3f
\" Single Quote - Same as \x22
\" Double Quote - Same as \x22
\\ A Single Backslash - Same as \x5c

"abcdef" String (null is added to the end)

Identifiers:

ABCDE Up to 32 characters beginning with a non-numeric. Valid

characters are A-Z, 0-9 and _ (underscore).

ID[X] ISingle Subscript

ID[X][X] Multiple Subscripts

ID.ID [Structure or union reference

ID- IStructure or union reference

>|D

37

TEST PCD

Operators

+ Addition Operator

+= Addition assignment operator, x+=y, is the same as x=x+y

&= Bitwise and assignment operator, x&=y, is the same as
X=X&Y

& Address operator

& Bitwise and operator

A= Bitwise exclusive or assignment operator, x*=y, is the
same as x=x"‘y

A Bitwise exclusive or operator

I= Bitwise inclusive or assignment operator, xl=y, is the
same as x=xly

I Bitwise inclusive or operator

?: Conditional Expression operator

-- Decrement

/= Division assignment operator, x/=y, is the same as x=x/y

/ Division operator

== Equality

> Greater than operator

>= Greater than or equal to operator

++ Increment

* Indirection operator

1= Inequality

<<= Left shift assignment operator, x<<=y, is the same as
X=X<<Y

< Less than operator

<< Left Shift operator

<= Less than or equal to operator

&& Logical AND operator

Logical negation operator

Logical OR operator

%=

Modules assignment operator x%=y, is the same as
X=X%y

38

Expressions

Modules operator

Multiplication assignment operator, x*=y, is the same as

X=X*y

Multiplication operator

One's complement operator

>>= Right shift assignment, x>>=y, is the same as x=x>>y
>> Right shift operator

-> Structure Pointer operation

-= Subtraction assignment operator

- Subtraction operator

sizeof Determines size in bytes of operand

Operator Precedence

PIN DESCENDING PRECEDENCE

(expr)

++expr expr++ - -expr expr - -
lexpr ~expr +expr -expr
(type)expr *expr &value sizeof(type)
expr*expr exprilexpr exproexpr

expr+expr expr-expr

expr<<expr expr>>expr

expr<expr expr<=expr expr>expr expr>=expr
expr==expr exprI=expr

expr&expr

expriexpr

expr | expr

expr&é& expr

expr || expr

expr ? expr: expr

Ivalue = expr Ivalue+=expr Ivalue-=expr

Ivalue *=expr

Ivaluel=expr

Ivalue %e=expr

Ivalue>>=expr

Ivalue<<=expr

Ivalue &=expr

Ivalue A=expr

Ivalue|=expr

expr, expr

(Operators on the same line are equal in precedence)

39

TEST PCD

Reference Parameters

The compiler has limited support for reference parameters. This increases the readability of code
and the efficiency of some inline procedures. The following two procedures are the same. The one
with reference parameters will be implemented with greater efficiency when it is inline.

funct a(int*x,int*y) {
/*Traditional*/
if (*x!=5)
*y=*x+3;
}

funct al(s&a, &b);

funct b (inté&x,inté&y) {
/*Reference params*/
if (x!=5)
y=x+3;
}

funct b(a,b);

Variable Argument Lists

The compiler supports a variable number of parameters. This works like the ANSI requirements
except that it does not require at least one fixed parameter as ANSI does. The function can be
passed any number of variables and any data types. The access functions are VA_START,
VA_ARG, and VA_END. To view the number of arguments passed, the NARGS function can be
used.

/*
stdarg.h holds the macros and va list data type needed for variable
number of parameters.

*/

finclude <stdarg.h>

A function with variable number of parameters requires two things. First, it requires the ellipsis (...),
which must be the last parameter of the function. The ellipsis represents the variable argument list.
Second, it requires one more variable before the ellipsis (...). Usually you will use this variable as a
method for determining how many variables have been pushed onto the ellipsis.

40

Expressions

Here is a function that calculates and returns the sum of all variables:
int Sum(int count, ...)
{
//a pointer to the argument list
va list al;
int x, sum=0;
//start the argument list
//count 1is the first variable before the ellipsis
va_ start(al, count);
while (count--) {
//get an int from the list
x = var_arg(al, int);
sum += Xx;
}
//stop using the list
va_end(al);
return (sum) ;

Some examples of using this new function:
x=Sum (5, 10, 20, 30, 40, 50);
y=Sum(3, a, b, c);

Default Parameters

Default parameters allows a function to have default values if nothing is passed to it when called.
int mygetc(char *c, int n=100) {
}

This function waits n milliseconds for a character over RS232. If a character is received, it saves it
to the pointer ¢ and returns TRUE. If there was a timeout it returns FALSE.

//gets a char, waits 100ms for timeout
mygetc (&c) ;

//gets a char, waits 200ms for a timeout
mygetc (&c, 200);

Overloaded Functions

Overloaded functions allow the user to have multiple functions with the same name, but they must
accept different parameters. The return types must remain the same.

Here is an example of function overloading: Two functions have the same name but differ in the

types of parameters. The compiler determines which data type is being passed as a parameter and
calls the proper function.

41

TEST PCD

This function finds the square root of a long integer variable.
long FindSquareRoot (long n) {
}

This function finds the square root of a float variable.

float FindSquareRoot (float n) {
}

FindSquareRoot is now called. If variable is of long type, it will call the first FindSquareRoot()
example. If variable is of float type, it will call the second FindSquareRoot() example.

result=FindSquareRoot (variable) ;

42

DATA DEFINITIONS

Voo
e

Basic and Special types

This section describes what the basic data types and specifiers are and how variables can be
declared using those types. In C all the variables should be declared before they are used. They
can be defined inside a function (local) or outside all functions (global). This will affect the visibility
and life of the variables.

C Compiler

Basic Types
Range
Type- . Unsigned Signed Digits
Specifier | >'2®
intl 1 bit number Oto 1l N/A 1/2
int8 8 bit number 0to 255 -128 to 127 2-3
intl6 16 bit number 0 to 65535 -32768 to 32767 4-5
int32 32 bit number 0 to 4294967295 | -2147483648 to 9-10
2147483647
int48 48 bit number 0to -140737488355328 to 14-15
281474976710655 | 140737488355327
int64 64 bit number N/A -9223372036854775808 to | 18-19
9223372036854775807
float32 32 bit float -1.5 x 10® to 3.4 x10%* 7-8
float48 48 bit float (higher -29x10% to 1.7x10%® 11-12
precision)

float64 64 bit float -5.0x10°% to 1.7 x 10 ** 15-16

C Standard Type Default Type

short int8

char unsigned int8

int int16

long int32

long long int64

float float32

double N/A float64

Note: All types, except char , by default are signed; however, may be preceded by unsigned or
signed (Except int64 may only be signed) . Short and long may have the keyword INT following
them with no effect. Also see #TYPE to change the default size. INT1 is a special type used to
generate very efficient code for bit operations and I/0O. Arrays of bits (INT1 or SHORT) in RAM are
now supported. Pointers to bits are not permitted. The device header files contain defines for
BYTE as an int8 and BOOLEAN as an intl. Integers are stored in little endian format. The LSB is
in the lowest address. Float formats are described in common questions.

43

TEST PCD

Type-Qualifier
static

auto

extern

register

_ fixed(n)

unsigned
signed

volatile

const

void

_readonly

Special types

Variable is globally active and initialized to 0. Only accessible from this
compilation unit.

Variable exists only while the procedure is active. This is the default and
AUTO need not be used.

External variable used with multiple compilation units. No storage is allocated.
Is used to make otherwise out of scope data accessible. there must be a
non-extern definition at the global level in some compilation unit.

If possible a CPU register instead of a RAM location.

Creates a fixed point decimal number where n is how many decimal places to
implement.

Data is always positive.
Data can be negative or positive. This is the default data type if not specified.

Tells the compiler optimizer that this variable can be changed at any point
during execution.

Data is read-only. Depending on compiler configuration, this qualifier may just
make the data read-only -AND/OR- it may place the data into program
memory to save space. (see #DEVICE const=)

Built-in basic type. Type void is used to indicate no specific type in places
where a type is required.

writes to this variable should be dis-allowed

Enum enumeration type: creates a list of integer constants.

enum [id]

{[id [=cexpr]] }
One or more comma separated

The id after ENUM is created as a type large enough to the largest constant in the list. The ids in
the list are each created as a constant. By default the first id is set to zero and they increment by
one. If a = cexpr follows an id that id will have the value of the constant expression and the
following list will increment by one.

For example:
enum colors{red, green=2, blue}; // red will be 0, green will be 2

44

// and blue will be 3

DATA DEFINITIONS

Struct structuretype: creates a collection of one or more variables, possibly of different types,
grouped together as a single unit.

struct[*] [id] { type-qualifier [*]id [bits]; }[id]

One or more, Zero
semi-colon or more
separated

For example:
struct data record {
int a [2];
int b : 2; /*2 bits */
int c : 3; /*3 bits*/
int d;
} data var; // data record is a structure type
//data var is a variable

Field Allocation

- Fields are allocated in the order they appear.

- The low bits of a byte are filled first.

- Fields 16 bits and up are aligned to a even byte boundry. Some Bits may by unused.

- No Field will span from an odd byte to an even byte unless the field width is a multiple of 16 bits.

Union union type: holds objects of different types and sizes, with the compiler keeping track of

size and alignment requirements. They provide a way to manipulate different kinds of data in a
single area of storage.

union[*] [id] { type-qualifier [*]id [bitsl; }[id]

One or more, Zero
semi-colon or more
separated

For example:
union u_tab {
int ival;

long 1lval;
float fval;
}i // u_tag is a union type that can hold a float

If typedef is used with any of the basic or special types it creates a new type name that can be
used in declarations. The identifier does not allocate space but rather may be used as a type
specifier in other data definitions.

45

TEST PCD

typedef [type-qualifier] [type-specifier] [declarator];

For example:

typedef int mybyte; // mybyte can be used in declaration to
// specify the int type

typedef short mybit; // mybyte can be used in declaration to
// specify the int type

typedef enum {red, green=2,blue}colors; //colors can be used to

declare

//variables of this enum type

__ADDRESS__: A predefined symbol __ ADDRESS__ may be used to indicate a type that must
hold a program memory address.

For example:
ADDRESS testa = 0x1000 //will allocate 16 bits for test a and
//initialize to 0x1000

Declarations

A declaration specifies a type qualifier and a type specifier, and is followed by a list of
one or more variables of that type.
Fore.g.:
int a,b,c,d;
mybit e, f;
mybyte g[3][2];
char *h;
colors j;
struct data record data[l0];
static int 1i;
extern long j;

Variables can also be declared along with the definitions of the special types.
For eg:
enum colors{red, green=2,blue}i,j,k; // colors is the enum type and
// 1,3,k are variables of that type

Non-RAM Data Definitions

CCS C compiler also provides a custom qualifier addressmod which can be used to define a
memory region that can be RAM, program eeprom, data eeprom or external memory. Addressmod
replaces the older typemod (with a different syntax).

The usage is :
addressmod (name,read function,write function,start address,end address);
Where the read_function and write_function should be blank for RAM, or for other memory should

be the following prototype:

46

DATA DEFINITIONS

// read procedure for reading n bytes from

// the memory starting at location addr

void read function(int32 addr,int8 *ram, int nbytes) {

} //write procedure for writing n bytes to the
//memory starting at location addr

void write function(int32 addr,int8 *ram, int nbytes) {

}

Example:
void DataEE Read(int32 addr, int8 * ram, int bytes) {
int i;
for (i=0;i<bytes;i++, ram++,addr++)
*ram=read eeprom(addr) ;
}
void DataEE Write (int32 addr, int8 * ram, int bytes) {
int i;
for (i=0;i<bytes;i++, ram++,addr++)
write eeprom(addr, *ram) ;
}
addressmod (DataEE,DataEE read,DataEE write, 5, 0xff);
// would define a region called DataEE between
// 0x5 and Oxff in the chip data EEprom.
void main (void)
{
int DataEE test;
int x,y;
x=12;
test=x; // writes x to the Data EEPROM
y=test; // Reads the Data EEPROM

Note: If the area is defined in RAM then read and write functions are not required, the variables
assigned in the memory region defined by the addressmod can be treated as a regular variable in
all valid expressions. Any structure or data type can be used with an addressmod. Pointers can
also be made to an addressmod data type. The #type directive can be used to make this memory
region as default for variable allocations.

The syntaxis :

#type default=addressmodname // all the variable declarations that
// follow will use this memory region

#type default= // goes back to the default mode

For example:

Type default=emi //emi is the addressmod name defined

char buffer([8192];
#include <memoryhog.h>
#type default=

47

TEST PCD

Using Program Memory for Data

CCS C Compiler provides a few different ways to use program memory for data. The different ways
are discussed below:

Constant Data:

The CONST qualifier will place the variables into program memory. If the keyword CONST is used
before the identifier, the identifier is treated as a constant. Constants should be initialized and may
not be changed at run-time. This is an easy way to create lookup tables.

The ROM Qualifier puts data in program memory with 3 bytes per instruction space. The address
used for ROM data is not a physical address but rather a true byte address. The & operator can be
used on ROM variables however the address is logical not physical.
The syntax is:
const type id[cexpr] = {value}
For example:
Placing data into ROM
const int table([1l6]={0,1,2...15}
Placing a string into ROM
const char cstring[6]={"hello"}
Creating pointers to constants
const char *cptr;
cptr = string;

The #org preprocessor can be used to place the constant to specified address blocks.
For example:
The constant ID will be at 1C00.
#ORG 0x1C00, Ox1COF
CONST CHAR ID[10]= {"123456789"};
Note: Some extra code will precede the 123456789.

The function label_address can be used to get the address of the constant. The constant variable
can be accessed in the code. This is a great way of storing constant data in large programs.
Variable length constant strings can be stored into program memory.

A special method allows the use of pointers to ROM. This method does not contain extra code at
the start of the structure as does constant.
For example:
char rom commands[] = {“put|get|status]|shutdown”};

The compiler allows a non-standard C feature to implement a constant array of variable length
strings.
The syntax is:
const char id[n] [*] = { "string", "string" ...};

Where n is optional and id is the table identifier.
For example:
const char colors[] [*] = {"Red", "Green", "Blue"};

48

DATA DEFINITIONS

#ROM directive:
Another method is to use #rom to assign data to program memory.
The syntax is:
#rom address = {data, data, .., data}
For example:
Places 1,2,3,4 to ROM addresses starting at 0x1000
#rom 0x1000 = (1, 2, 3, 4}
Places null terminated string in ROM
#rom 0x1000={"hello"}
This method can only be used to initialize the program memory.

Built-in-Functions:
The compiler also provides built-in functions to place data in program memory, they are:
[]

® write program memory (address, dataptr, count);
- Writes count bytes of data from dataptr to address in program memory.
- Every fourth byte of data will not be written, fill with 0x00.

Please refer to the help of these functions to get more details on their usage and limitations
regarding erase procedures. These functions can be used only on chips that allow writes to
program memory. The compiler uses the flash memory erase and write routines to implement the
functionality.

The data placed in program memory using the methods listed above can be read from width the
following functions:
® read program memory ((address, dataptr, count)
- Reads count bytes from program memory at address to RAM at dataptr. Every
fourth byte of data is read as 0x00
® read rom memory ((address, dataptr, count)
- Reads count bytes from program memory at the logical address to RAM at
dataptr.

These functions can be used only on chips that allow reads from program memory. The compiler
uses the flash memory read routines to implement the functionality.

Function Definition

The format of a function definition is as follows:

[qualifier] id ([type-specifier id]) { [stmt]}
Optional See Below Zero or more comma Zero or more Semi-colon
separated. separated. See Statements.

See Data Types
49

TEST PCD

The qualifiers for a function are as follows:
e VOID

o type-specifier

e f#iseparate

o #inline

o #int_..

When one of the above are used and the function has a prototype (forward declaration of the

function before it is defined) you must include the qualifier on both the prototype and function

definition.

A (non-standard) feature has been added to the compiler to help get around the problems created
by the fact that pointers cannot be created to constant strings. A function that has one CHAR
parameter will accept a constant string where it is called. The compiler will generate a loop that will
call the function once for each character in the string.

Example:
void lcd putc(char c) {

}

lcd putc ("Hi There.");

50

FUNCTIONAL OVERVIEWS

Voo
e

12C

C Compiler

12C™ is a popular two-wire communication protocol developed by Phillips. Many PIC
microcontrollers support hardware-based 12C™. CCS offers support for the hardware-based [2C™
and a software-based master I2C™ device. (For more information on the hardware-based 12C
module, please consult the datasheet for you target device; not all PICs support [2C™.)

Relevant Functions:
i2c_start()
i2c_write(data)
i2c_read()

i2c_stop()

i2c_poll()

Relevant Preprocessor:
#USE 12C

Relevant Interrupts:
#INT_SSP
#INT_BUSCOL
#INT_I2C
#INT_BUSCOL2
#INT_SSP2
#INT_mi2c
#INT_si2c

Relevant Include Files:
None, all functions built-in

Relevant getenv()
Parameters:

12C_SLAVE
12C_MASTER

Example Code:
#define Device_SDA PIN_C3
#define Device_SLC PIN_C4

Issues a start command when in the 12C master mode.
Sends a single byte over the 12C interface.

Reads a byte over the 12C interface.

Issues a stop command when in the I12C master mode.

Returns a TRUE if the hardware has received a byte in the
buffer.

Configures the compiler to support I2C™ to your
specifications.

I12C or SPI activity

Bus Collision

12C Interrupt (Only on 14000)

Bus Collision (Only supported on some PIC18's)

12C or SPI activity (Only supported on some PIC18's)
Interrupts on activity from the master 12C module
Interrupts on activity form the slave 12C module

Returns a 1 if the device has 12C slave HW
Returns a 1 if the device has a 12C master H/W

/I Pin defines

51

TEST PCD

#use i2c(master,
sda=Device_SDA,
scl=Device_SCL)

BYTE data,;
i2c_start();
i2c_write(data);
i2c_stop();

ADC

/I Configure Device as Master

/I Data to be transmitted

/I Issues a start command when in the 12C master mode.
/I Sends a single byte over the 12C interface.

/llssues a stop command when in the 12C master mode.

These options let the user configure and use the analog to digital converter module. They are only
available on devices with the ADC hardware. The options for the functions and directives vary
depending on the chip and are listed in the device header file. On some devices there are two
independent ADC modules, for these chips the second module is configured using secondary ADC

setup functions (Ex. setup_ADC?2).

Relevant Functions:
setup_adc(mode)
setup_adc_ports(value)
set_adc_channel(channel)
read_adc(mode)

adc_done()

setup_adc2(mode)
setup_adc_ports2(ports, reference)
set_adc_channel2(channel)
read_adc2(mode)

adc_done()

Relevant Preprocessor:
#DEVICE ADC=xx

52

Sets up the a/d mode like off, the adc clock etc.
Sets the available adc pins to be analog or digital.
Specifies the channel to be use for the a/d call.
Starts the conversion and reads the value. The
mode can also control the functionality.

Returns 1 if the ADC module has finished its
conversion.

Sets up the ADC2 module, for example the ADC
clock and ADC sample time.

Sets the available ADC2 pins to be analog or digital,
and sets the voltage reference for ADC2.

Specifies the channel to use for the ADC2 input.
Starts the sample and conversion sequence and
reads the value The mode can also control the
functionality.

Returns 1 if the ADC module has finished its
conversion

Configures the read_adc return size. For example,
using a PIC with a 10 bit A/D you can use 8 or 10
for xx- 8 will return the most significant byte, 10 will
return the full A/D reading of 10 bits.

Relevant Interrupts:
INT_AD
INT_ADOF

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
ADC_CHANNELS
ADC_RESOLUTION

Example Code:
#DEVICE ADC=10

long value;
setup_adc(ADC_CLOCK_INTERNAL);
setup_adc_ports(ALL_ANALOG);
set_adc_channel(0);

delay_us(10);

value=read_adc();

read_adc(ADC_START_ONLY);
value=read_adc(ADC_READ_ONLY);

Analog Comparator

Functional Overviews

Interrupt fires when a/d conversion is complete
Interrupt fires when a/d conversion has timed out

Number of A/D channels
Number of bits returned by read_adc

/lenables the a/d module

/land sets the clock to internal adc clock

I/sets all the adc pins to analog

/lthe next read_adc call will read channel 0

/la small delay is required after setting the channel
/land before read

/Istarts the conversion and reads the result

//land store it in value

/lonly starts the conversion

/Ireads the result of the last conversion and store it
in value. Assuming the device hat a 10bit ADC
module, value will range between 0-3FF. If
#DEVICE ADC=8 had been used instead the result
will yield O-FF. If #DEVICE ADC=16 had been used
instead the result will yield 0-FFCO

These functions sets up the analog comparator module. Only available in some devices.

Relevant Functions:

Enables and sets the analog comparator module. The
options vary depending on the chip, please refer to the
header file for details.

setup_comparator(mode)

Relevant Preprocessor:
None

TEST PCD

Relevant Interrupts:

INT_COMP Interrupt fires on comparator detect. Some chips have
more than one comparator unit, and hence more
interrupts.

Relevant Include Files: None, all functions built-in

Relevant getenv() parameters:
COMP Returns 1 if the device has comparator

Example Code:

setup_comparator(A4_A5_NC_NC);
if(C10UT)

output_low(PIN_DO);

else

output_high(PIN_D1);

CAN Bus

These functions allow easy access to the Controller Area Network (CAN) features included with the
MCP2515 CAN interface chip and the PIC24, dsPIC30 and dsPIC33 MCUs. These functions will
only work with the MCP2515 CAN interface chip and PIC microcontroller units containing either a
CAN or an ECAN module. Some functions are only available for the ECAN module and are
specified by the word ECAN at the end of the description. The listed interrupts are not available to
the MCP2515 interface chip.

Relevant Functions:

can_init(void); Initializes the module to 62.5k baud for ECAN
and 125k baud for CAN and clears all the filters
and masks so that all messages can be received
from any ID.

can_set_baud(void); Initializes the baud rate of the bus to 62.5kHz for
ECAN and 125kHz for CAN. It is called inside
the can_init() function so there is no need to call
it.

can_set_mode Allows the mode of the CAN module to be

(CAN_OP_MODE mode); changed to listen all mode, configuration mode,
listen mode, loop back mode, disabled mode, or
normal mode.

54

can_set_functional_mode
(CAN_FUN_OP_MODE mode);

can_set_id(int16 *addr, int32 id, intl ext)

can_set_buffer_id(BUFFER buffer, int32
id, intl ext)

can_get_id(BUFFER buffer, intl ext)
can_putd(int32 id, int8 *data, int8 len, int8

priority, intl ext, intl rtr)

can_getd(int32 &id, int8 *data, int8 &len,
struct rx_stat &stat)

can_kbhit()

can_tbe()

can_abort()
can_enable_b_transfer(BUFFER b)

can_enable_b_receiver(BUFFER b)

can_enable_rtr(BUFFER b)

can_disable_rtr(BUFFER b)
can_load_rtr (BUFFER b, int8 *data, int8
len)

can_set_buffer_size(int8 size)

can_enable_filter
(CAN_FILTER_CONTROL filter)

Functional Overviews

Allows the functional mode of ECAN modules to
be changed to legacy mode, enhanced legacy
mode, or first in firstout (fifo) mode. ECAN

Can be used to set the filter and mask ID's to the
value specified by addr. It is also used to set the
ID of the message to be sent on CAN chips.

Can be used to set the ID of the message to be
sent for ECAN chips. ECAN

Returns the ID of a received message.

Constructs a CAN packet using the given
arguments and places it in one of the available
transmit buffers.

Retrieves a received message from one of the
CAN buffers and stores the relevant data in the
referenced function parameters.

Returns TRUE if valid CAN messages is
available to be retrieved from one of the receive
buffers.

Returns TRUE if a transmit buffer is is available
to send more data.

Aborts all pending transmissions.

Sets the specified programmable buffer to be a
transmit buffer. ECAN

Sets the specified programmable buffer to be a
receive buffer. By default all programmable
buffers are set to be receive buffers. ECAN
Enables the automatic response feature which
automatically sends a user created packet when
a specified ID is received. ECAN

Disables the automatic response feature. ECAN
Creates and loads the packet that will
automatically transmitted when the triggering ID
is received. ECAN

Set the number of buffers to use. Size can be 4,
6, 8, 12, 16, 24, and 32. By default can_init()
sets size to 32. ECAN

Enables one of the acceptance filters included in
the ECAN module. ECAN

55

TEST PCD

can_disable_filter
(CAN_FILTER_CONTROL filter)
can_associate_filter_to_buffer
(CAN_FILTER_ASSOCIATION_BUFFERS
buffer, CAN_FILTER_ASSOCIATION
filter)

can_associate_filter_to_mask
(CAN_MASK_FILTER_ASSOCIATION
mask, CAN_FILTER_ASSOCIATION filter)

can_fifo_getd(int32 &id, int8 *data, int8
&len, struct rx_stat &stat)
can_trbO_putd(int32 id, int8 *data, int8 len,
int8 pri, intl ext, intl rtr)

can_enable_interrupts(INTERRUPT
setting)

can_disable_interrupts(INTERRUPT
setting)

56

Disables one of the acceptance filters included
in the ECAN module. ECAN

Used to associate a filter to a specific buffer.
This allows only specific buffers to be filtered
and is available in the ECAN module. ECAN

Used to associate a mask to a specific buffer.
This allows only specific buffer to have this mask
applied. This feature is available in the ECAN
module. ECAN
Retrieves the next buffer in the FIFO buffer. Only
available in the ECAN module. ECAN
Constructs a CAN packet using the given
arguments and places it in transmit buffer 0.
Similar functions available for all transmit
buffers 0-7. Buffer must be made a transmit
buffer with can_enable_b_transfer() function
before function can be used. ECAN
Enables specified interrupt conditions that cause
the #INT_CANL interrupt to be triggered.
Available options are:
TB - Transmitt Buffer Interrupt
ECAN
RB - Receive Buffer Interrupt
ECAN
RXOV - Receive Buffer Overflow Interrupt
ECAN
FIFO - FIFO Almost Full Interrupt
ECAN
ERR - Error interrupt
ECAN/CAN
WAK - Wake-Up Interrupt
ECAN/CAN
IVR - Invalid Message Received Interrupt
ECAN/CAN
RXO0 - Receive Buffer O Interrupt
CAN
RX1 - Receive Buffer 1 Interrupt
CAN
TXO - Transmit Buffer O Interrupt
CAN
TX1 - Transmit Buffer 1 Interrupt
CAN
TX2 - Transmit Buffer 2 Interrupt
CAN
Disable specified interrupt conditions so they
doesn't cause the #INT_CANL1 interrupt to be
triggered. Available options are the same as for

can_config_ DMA(void)

For PICs that have two CAN or ECAN
modules all the above function are
available for the second module, and they
start with can2 instead of can.

Relevant Preprocessor:

Relevant Interrupts:
#INT_CAN1

#INT_CAN2

Relevant Include Files:
can-mcp2510.c

can-dsPIC30.c

can-PIC24.c

Relevant getenv() Parameters:
Example Code:

can_init();
can_putd(0x300,data,8,3, TRUE,FALSE);

can_getd(ID,data,len,stat);

Functional Overviews

the can_enable_interrupts() function. By default
all conditions are disabled.

Configures the DMA buffers to use with the
ECAN module. It is called inside the can_init()
function so there is no need to call it. ECAN
Examples:

can2_init();

can2_kbhit();

None

Interrupt for CAN or ECAN module 1. This
interrupt is triggered when one of the conditions
set by the can_enable_interrupts() is meet.
Interrupt for CAN or ECAN module 2. This
interrupt is triggered when one of the conditions
set by the can2_enable_interrupts() is meet.
This interrupt is only available on PICs that
have two CAN or ECAN modules.

Drivers for the MCP2510 and MCP2515
interface chips.

Drivers for the built in CAN module on dsPIC30F
chips.

Drivers for the build in ECAN module on
PIC24HJ and dsPIC33FJ chips.

None

/I Initializes the CAN bus.

/I Places a message on the CAN bus with

/I 1D = 0x300 and eight bytes of data pointed to
by

/I “data”, the TRUE causes an extended ID to be

/I sent, the FALSE causes no remote
transmission

/l to be requested.

/I Retrieves a message from the CAN bus
storing the

/['ID in the ID variable, the data at the array
pointed

// to by “data”, the number of data bytes in len,

/I and statistics about the data in the stat
structure.

57

TEST PCD

Configuration Memory

On all dsPIC30, dsPIC33 and PIC24s the configuration memory is readable and writeable. The
configuration memory contains the configuration bits for things such as the oscillator mode,
watchdog timer enable, etc. These configuration bits are set by the CCS C compiler usually through
a #fuse. CCS provides an API that allows these bits to be changed in run-time.

Relevant Functions:
write_configuration_memory
(ramPtr, n);

or

write_configuration_memory
(offset, ramPtr, n);

read_configuration_memory
(ramPtr, n);

Relevant Preprocessor:

Relevant Interrupts :
Relevant Include Files:

Relevant getenv()
parameters:

Example Code:
int16 data = Ox0C32;

write_configuration_memory
(&data, 2);

CRC

Writes n bytes to configuration from ramPtr, no erase
needed

Write n bytes to configuration memory, starting at offset,
from ramPtr */

Read n bytes of configuration memory, save to ramPtr

The initial value of the configuration memory is set through a
#FUSE

None
None, all functions built-in

None

Ihwrites 2 bytes to the configuration memory

The programmable Cyclic Redundancy Check (CRC) is a software configurable CRC checksum
generator in select PIC24F, PIC24H, PIC24EP, and dsPIC33EP devices. The checksum is a
unigue number associated with a message or a block of data containing several bytes. The built-in
CRC module has the following features:

- Programmable bit length for the CRC generator polynomial. (up to 32 bit length)

- Programmable CRC generator polynomial.

- Interrupt output.

- 4-deep, 8-deep, 16-bit, 16-deep or 32-deep, 8-bit FIFO for data input.
- Programmed bit lenght for data input. (32-bit CRC Modules Only)

58

Functional Overviews

Relevant Functions:

setup_crc (polynomial) This will setup the CRC polynomial.
crc_init (data) Sets the initial value used by the CRC module.
crc_calc (data) Returns the calculated CRC value.

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_CRC On completion of CRC calculation.

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
Int16 data[8];

intl6 result;

setup_crc(15, 3, 1); /l CRC Polynomial is X16 + X15 + X3 + X1+ 1 or
Polynomial = 8005h

crc_init(OXFEEE); Starts the CRC accumulator out at OXFEEE

Result = crc_calc(&data[0], 8); Calculate the CRC

DAC

These options let the user configure and use the digital to analog converter module. They are only
available on devices with the DAC hardware. The options for the functions and directives vary
depending on the chip and are listed in the device header file.

Relevant Functions:

setup_dac(divisor) Sets up the DAC e.g. Reference voltages
dac_write(value) Writes the 8-bit value to the DAC module
setup_dac(mode, divisor) Sets up the d/a mode e.g. Right enable, clock divisor
dac_write(channel, value) Writes the 16-bit value to the specified channel

Relevant Preprocessor:
#USE DELAY Must add an auxiliary clock in the #use delay preprocessor.

59

TEST PCD

Relevant Interrupts:

None

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters:

None

Example Code:

intl6 i =0;
setup_dac(DAC_RIGHT_ON,
5);

While(1){

i++;

dac_write(DAC_RIGHT, i);
}

Data Eeprom

For example:
#USE DELAY(clock=20M, Aux: crystal=6M, clock=3M)

/lenables the d/a module with right channel enabled and a
division of the clock by 5

[hwrites i to the right DAC channel

The data eeprom memory is readable and writable in some chips. These options lets the user read
and write to the data eeprom memory. These functions are only available in flash chips.

Relevant Functions:

(8 bit or 16 bit depending on
the device)
read_eeprom(address)
write_eeprom(address, value)
read_eeprom(address, [N])

read_eeprom(address,
[variable])
read_eeprom(address,
pointer, N)
write_eeprom(address, value)
write_eeprom(address,
pointer, N)

Relevant Preprocessor:
#ROM address={list}

write_eeprom = noint

60

Reads the data EEPROM memory location
Erases and writes value to data EEPROM location address.

Reads N bytes of data EEPROM starting at memory
location address. The maximum return size is int64.

Reads from EEPROM to fill variable starting at address
Reads N bytes, starting at address, to pointer

Writes value to EEPROM address
Writes N bytes to address from pointer

Can also be used to put data EEPROM memory data into
the hex file.

Allows interrupts to occur while the write_eeprom()
operations is polling the done bit to check if the write

Relevant Interrupts:
INT_EEPROM

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

DATA_EEPROM

Example Code:

#ROM
0x007FFC00={1,2,3,4,5}

write_eeprom(0x10, 0x1337);
value=read_eeprom(0x0);

DCI

Functional Overviews
operations has completed. Can be used as long as no
EEPROM operations are performed during an ISR.

Interrupt fires when EEPROM write is complete

Size of data EEPROM memory.

/I Inserts this data into the hex file

/I The data EEPROM address differs between PICs
/I Please refer to the device editor for device specific values.

/I Writes 0x1337 to data EEPROM location 10.
/l Reads data EEPROM location 10 returns 0x1337.

DCl is an interface that is found on several dsPIC devices in the 30F and the 33FJ families. Itis a
multiple-protocol interface peripheral that allows the user to connect to many common audio

codecs through common (and highly configurable) pulse code modulation transmission protocols.

Generic multichannel protocols, 12S and AC’97 (16 & 20 bit modes) are all supported.

Relevant Functions:

setup_dci(configuration, data
size, rx config, tx config,
sample rate);
setup_adc_ports(value)

set_adc_channel(channel)

read_adc(mode)

adc_done()

Relevant Preprocessor:
#DEVICE ADC=xx

Initializes the DCI module.

Sets the available adc pins to be analog or digital.
Specifies the channel to be use for the a/d call.

Starts the conversion and reads the value. The mode can
also control the functionality.

Returns 1 if the ADC module has finished its conversion.

Configures the read_adc return size. For example, using a
PIC with a 10 bit A/D you can use 8 or 10 for xx- 8 will return
the most significant byte, 10 will return the full A/D reading
of 10 bits.

61

TEST PCD

Relevant Interrupts:

INT_DCI Interrupt fires on a number (user configurable) of data words
received.
Relevant Include Files: None, all functions built-in

Relevant getenv() parameters:
None
Example Code:

signed int16 left_channel, right_channel;

dci_initialize((1I2S_MODE | DCI_MASTER | DCI_CLOCK_OUTPUT |

SAMPLE_RISING_EDGE | UNDERFLOW _LAST |
MULTI_DEVICE_BUS),DCI_1WORD_FRAME

| DCI_16BIT_WORD | DCI_2WORD_INTERRUPT, RECEIVE_SLOTO | RECEIVE_SLOT1,
TRANSMIT_SLOTO | TRANSMIT_SLOT1, 6000);

dci_start();

while(1)
{

dci_read(&left_channel, &right_channel);

dci_write(&left_channel, &right_channel);

DMA

The Direct Memory Access (DMA) controller facilitates the transfer of data between the CPU and
its peripherals without the CPU's assistance. The transfer takes place between peripheral data
registers and data space RAM. The module has 8 channels and since each channel is
unidirectional, two channels must be allocated to read and write to a peripheral. Each DMA channel
can move a black of up to 1024 data elements after it generates an interrupt to the CPU to indicate
that the lock is available for processing. Some of the key features of the DMA module are:

- Eight DMA Channels.

- Byte or word transfers.

- CPU interrupt after half or full block transfer complete.

- One-Shot or Auto-Repeat block transfer modes.

- Ping-Pong Mode (automatic switch between two DSPRAM start addresses after each

block transfer is complete).

62

Relevant Functions:
setup_dma(channel, peripheral,mode)
dma_start(channel, mode,address)
dma_status(channel)

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_DMAX
Relevant Include Files:

None, all functions built-in

Relevant getenv() parameters:
None

Example Code:

setup_dma(1,DMA_IN_SPI1,DMA_BYTE);

dma_start(1, DMA_CONTINOUS|

DMA_PING_PONG, 0x2000);

Data Signal Modulator

Functional Overviews

Configures the DMA module to copy data from
the specified peripheral to RAM allocated for
the DMA channel.

Starts the DMA transfer for the specified
channel in the specified mode of operation.
This function will return the status of the
specified channel in the DMA module.

Interrupt on channel X after DMA block or half
block transfer.

Setup channel 1 of the DMA module to read the
SPI1 channel in byte mode.

Start the DMA channel with the DMA RAM
address of 0x2000

The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the “modulator
signal”) with a carrier signal to produce a modulated output. Both the carrier and the modulator
signals are supplied to the DSM module, either internally from the output of a peripheral, or
externally through an input pin. The modulated output signal is generated by performing a logical
AND operation of both the carrier and modulator signals and then it is provided to the MDOUT pin.
Using this method, the DSM can generate the following types of key modulation schemes:

. Frequency Shift Keying (FSK)
° Phase Shift Keying (PSK)
° On-Off Keying (OOK)

63

TEST PCD

Relevant Functions:

(8 bit or 16 bit depending on the
device)
setup_dsm(mode,source,carrier)

setup_dsm(TRUE)
setup_dsm(FALSE)

Relevant Preprocessor:
Relevant Interrupts:

Relevant Include Files:

Relevant getenv() parameters:

Example Code:
setup_dsm(DSM_ENABLED |

DSM_OUTPUT_ENABLED,

DSM_SOURCE_UARTL,
DSM_CARRIER_HIGH_VSS |

DSM_CARRIER_LOW_OC1);

if(input(PIN_BO))
setup_dsm(FALSE);

else
setup_dsm(TRUE);

Extended RAM

Some PIC24 devices have more than 30K of RAM. For these devices a special method is required
to access the RAM above 30K. This extended RAM is organized into pages of 32K bytes each, the

Configures the DSM module and selects the source signal
and carrier signals.

Enables the DSM module.
Disables the DSM module.

None

None

None, all functions built-in

None

/[Enables DSM module with the output enabled and
selects UART1

/las the source signal and VSS as the high carrier signal
and OCl's

/IPWM output as the low carrier signal.

Disable DSM module

Enable DSM module

first page of extended RAM starts on page 1.

Relevant Functions:

write_extended ram(p,addr,ptr,n);

read extended ram(p,addr,ptr,n);

64

Writes n bytes from ptr to extended RAM page
p starting at address addr.
Reads n bytes from extended RAM page p

Relevant Preprocessor:
None

Relevant Interrupts :
None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

None

Example Code:

Functional Overviews

starting a address addr to ptr.

write_extended_ram(1,0x100,WriteData,8); /I\Writes 8 bytes from WriteData to addresses

0x100
/lto 0x107 of extended RAM page 1.

read_extended_ram(1,0x100,ReadData,8); /IReads 8 bytes from addresses 0x100 to

0x107 of
/lextended RAM page 1 to ReadData.

General Purpose I/O

These options let the user configure and use the 1/0 pins on the device. These functions will affect
the pins that are listed in the device header file.

Relevant Functions:
output_high(pin)
output_low(pin)
output_float(pin)

output_x(value)
output_bit(pin,value)
input(pin)
input_state(pin)

set_tris_x(value)

input_change_x()

Relevant Preprocessor:
#USE STANDARD_IO(port)

Sets the given pin to high state.

Sets the given pin to the ground state.

Sets the specified pin to the output mode. This will allow the pin to
float high to represent a high on an open collector type of
connection.

Outputs an entire byte to the port.

Outputs the specified value (0,1) to the specified 1/O pin.

The function returns the state of the indicated pin.

This function reads the level of a pin without changing the
direction of the pin as INPUT() does.

Sets the value of the I/O port direction register. A '1" is an input
and '0' is for output.

This function reads the levels of the pins on the port, and
compares them to the last time they were read to see if there was
a change, 1 if there was, O if there wasn't.

This compiler will use this directive be default and it will
65

TEST PCD

automatically inserts code for the direction register whenever an
I/0 function like output_high() or input() is used.

#USE FAST_IO(port) This directive will configure the 1/O port to use the fast method of
performing 1/0O. The user will be responsible for setting the port
direction register using the set_tris_x() function.

#USE FIXED_IO This directive set particular pins to be used an input or output, and

(port_outputs=;in,pin?) the compiler will perform this setup every time this pin is used.

Relevant Interrupts:
None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
PIN:pb Returns a 1 if bit b on port p is on this part

Example Code:
#use fast io(b)

Int8 Tris value= O0x0F;
intl Pin value;

set tris b(Tris value); //Sets BO:B3 as input and B4:B7 as output

output high (PIN B7); //Set the pin B7 to High
If (input (PIN BO0)) { //Read the value on pin BO, set B7 to low if pin BO
is high

output high (PIN B7)
i}

Input Capture

These functions allow for the configuration of the input capture module. The timer source for the

input capture operation can be set to either Timer 2 or Timer 3. In capture mode the value of the
selected timer is copied to the ICXBUF register when an input event occurs and interrupts can be
configured to fire as needed.

Relevant Functions:
setup_capture(x, mode) Sets the operation mode of the input capture module x
get_capture(x, wait) Reads the capture event time from the ICxBUF result register. If

wait is true, program flow waits until a new result is present.
Otherwise the oldest value in the buffer is returned.

Relevant Preprocessor: None

66

Relevant Interrupts:
INT_ICx

Relevant Include Files:

Relevant getenv() parameters:

Example Code:

setup timer3 (TMR INTERNAL

Functional Overviews

Interrupt fires on capture event as configured

None, all functions built-in.

None

TMR DIV BY 8);

setup capture (2, CAPTURE FE | CAPTURE TIMER3);

while (TRUE) {

timerValue = get capture(2, TRUE);

printf (“A module 2 capture event occurred at: $LU”, timerValue;

Internal Oscillator

Two internal oscillators are present in PCD compatible chips, a fast RC and slow RC oscillator
circuit. In many cases (consult your target datasheet or family data sheet for target specifics) the
fast RC oscillator may be connected to a PLL system, allowing a broad range of frequencies to be
selected. The Watchdog timer is derived from the slow internal oscillator.

Relevant Functions:
setup_oscillator(')

Relevant Preprocessor:
#FUSES

Relevant Interrupts:
#int_oscfail

Relevant Include Files:

Relevant getenv() parameters:

CLOCK
FUSE_SETxxxx

Example Code:

Explicitly configures the oscillator.

Specifies the values loaded in the device configuration memory.
May be used to setup the oscillator configuration.

Interrupts on oscillator failure

None, all functions built-in

Returns the clock speed specified by #use delay()
Returns 1 if the fuse xxxx is set.

None

67

TEST PCD

Interrupts

The following functions allow for the control of the interrupt subsystem of the microcontroller. With
these functions, interrupts can be enabled, disabled, and cleared. With the preprocessor directives,
a default function can be called for any interrupt that does not have an associated isr, and a global
function can replace the compiler generated interrupt dispatcher.

Relevant Functions:
disable_interrupts()

enable_interrupts()

ext_int_edge()

clear_interrupt()

Relevant Preprocessor:
#INT_XXX level=x

#INT_XXX fast

Relevant Interrupts:
#int_default

#int_global

#int_xxx

Relevant Include Files:

Relevant getenv() Parameters:

Example Code:
#int_timer0
void timerQinterrupt()

68

Disables the specified interrupt.
Enables the specified interrupt.

Enables the edge on which the edge interrupt should trigger. This
can be either rising or falling edge.

This function will clear the specified interrupt flag. This can be
used if a global isr is used, or to prevent an interrupt from being
serviced.

x is an int 0-7, that selects the interrupt priority level for that
interrupt.

This directive makes use of shadow registers for fast register
save.

This directive can only be used in one ISR

This directive specifies that the following function should be called
if an interrupt is triggered but no routine is associated with that
interrupt.

This directive specifies that the following function should be called
whenever an interrupt is triggered. This function will replace the
compiler generated interrupt dispatcher.

This directive specifies that the following function should be called
whenever the xxx interrupt is triggered. If the compiler generated
interrupt dispatcher is used, the compiler will take care of clearing
the interrupt flag bits.

none, all functions built in.

none

I/l #int_timer associates the following function with the

enable_interrupts(TIMERO);
disable_interrtups(TIMERO);
clear_interrupt(TIMERO);

Linker
#EXPORT (options)

#IMPORT (options)

#MODULE

Functional Overviews

/l interrupt service routine that should be called
I/l enables the timerQ interrupt

/I disables the timer0 interrupt

/I clears the timerO interrupt flag

Output Compare/PWM Overview

The following functions are used to configure the output compare module. The output compare has
three modes of functioning. Single compare, dual compare, and PWM. In single compare the
output compare module simply compares the value of the OCxR register to the value of the timer
and triggers a corresponding output event on match. In dual compare mode, the pin is set high on
OCxR match and then placed low on an OCxRS match. This can be set to either occur once or
repeatedly. In PWM mode the selected timer sets the period and the OCXRS register sets the duty
cycle. Once the OC module is placed in PWM mode the OCxR register becomes read only so the
value needs to be set before placing the output compare module in PWM mode. For all three
modes of operation, the selected timer can either be Timer 2 or Timer 3.

Relevant Functions:
setup_comparex (x, mode)

set_comparex_time (x, ocr,
[ocrs])

set_pwm_duty (x, value)
Relevant Preprocessor:
None

Relevant Interrupts:
INT_OCx

Relevant Include Files:

Relevant getenv() parameters:

Sets the mode of the output compare / PWM
module x

Sets the OCR and optionally OCRS register values
of module x.

Sets the PWM duty cycle of module x to the
specified value

Interrupt fires after a compare event has occurred
None, all functions built-in.

None

69

TEST PCD

Example Code:

// Outputs a 1 second pulse on the 0C2 PIN

// using dual compare mode on a PIC

// with an instruction clock of

intl6 OCR 2
intl6 OCRS_2

0x1000;
0x5C4B;

set compare time (2, OCR 2,

setup compare (2,

setup timer3 (TMR INTERNAL |

Motor Control PWM

These options lets the user configure the Motor Control Pulse Width Modulator (MCPWM) module.
The MCPWM is used to generate a periodic pulse waveform which is useful is motor control and
power control applications. The options for these functions vary depending on the chip and are

listed in the device header file.

Relevant Functions:

setup_motor_pwm(pwm,options,
timebase);
set_motor_pwm_duty(pwm,unit,time)

set_motor_pwm_event(pwm,time)

set_motor_unit(pwm,unit,options,
active_deadtime, inactive_deadtime);

get_motor_pwm_event(pwm);

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_PWM1

Relevant Include Files:

None, all functions built-in

70

(20Mhz/4)
// Start pulse when timer is at 0x1000

// End pulse after 0x04C4B timer counts
(0x1000 + 0x04C4B

// (1 sec)/[(4/20000000)*256]
// 256 timer prescaler value
code below)

0x04C4B
(set in

OCRS 2);
COMPARE SINGLE PULSE |

COMPARE TIMER3) ;

TMR DIV BY 256);

Configures the motor control PWM module.

Configures the motor control PWM unit duty.

Configures the PWM event on the motor control unit.

Configures the motor control PWM unit.

Returns the PWM event on the motor control unit.

PWM Timebase Interrupt

Functional Overviews

Relevant getenv() parameters:

None

Example Code:
/I Sets up the motor PWM module
setup_motor_pwm(1,MPWM_FREE_RUN | MPWM_SYNC_OVERRIDES, timebase);

/I Sets the PWM1, Group 1 duty cycle value to 0x55
set_motor_pwm_duty(1,1,0x55);

//Set the motor PWM event

set_motor_pmw_event(pwm,time);

/[Enable pwm pair

set_motor_unit(1,1,mpwm_ENABLE,0,0); /[Enables pwm1, Group 1 in complementary

/Imode, no deadtime

PMP/EPMP

The Parallel Master Port (PMP)/Enhanced Parallel Master Port (EPMP) is a parallel 8-bit/16-bit I/O
module specifically designed to communicate with a wide variety of parallel devices. Key features
of the PMP module are:

- 8 or 16 Data lines

- Up to 16 or 32 Programmable Address Lines
- Up to 2 Chip Select Lines

- Programmable Strobe option

- Address Auto-Increment/Auto-Decrement

- Programmable Address/Data Multiplexing

- Programmable Polarity on Control Signals

- Legacy Parallel Slave(PSP) Support

- Enhanced Parallel Slave Port Support

- Programmable Wait States

Relevant Functions:

setup_pmp This will setup the PMP/EPMP module for various mode and
(options,address_mask) specifies which address lines to be used.

setup_psp This will setup the PSP module for various mode and specifies
(options,address_mask) which address lines to be used.

71

TEST PCD

setup_pmp_csx(options,[offset])

setup_psp_es(options)
pmp_write (data)
psp_write(address,data)/
psp_write(data)

pmp_read()
psp_read(address)/ psp_read()

pmp_address(address)

pmp_overflow ()
pmp_input_full ()
psp_input_full()
pmp_output_full()
psp_output_full()
Relevant Preprocessor:
None

Relevant Interrupts :
#INT_PMP

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:

setup_pmp(PAR_ENABLE |
PAR_MASTER_MODE_1 |
PAR_STOP_IN_IDLE,0x00FF);

If (pmp_output_full ())

{
pmp_write(next_byte);

}

Program Eeprom

Sets up the Chip Select X Configuration, Mode and Base Address
registers

Sets up the Chip Select X Configuration and Mode registers
Write the data byte to the next buffer location.

This will write a byte of data to the next buffer location or will write
a byte to the specified buffer location.

Reads a byte of data.

psp_read() will read a byte of data from the next buffer location
and psp_read (address) will read the buffer location address.

Configures the address register of the PMP module with the
destination address during Master mode operation.

This will return the status of the output buffer underflow bit.
This will return the status of the input buffers.

This will return the status of the input buffers.

This will return the status of the output buffers.

This will return the status of the output buffers.

Interrupt on read or write strobe

Sets up Master mode with address lines PMAO:PMA7

The flash program memory is readable and writable in some chips and is just readable in some.
These options lets the user read and write to the flash program memory. These functions are only

available in flash chips.
72

Relevant Functions:
read_program_eeprom(address)

write_program_eeprom(address, value)

erase_program_eeprom(address)

write_program_memory(address,dataptr,count)

read_program_memory(address,dataptr,count)

write_rom_memory
(address, dataptr, count)

read_rom_memory (address, dataptr, count)

Relevant Preprocessor:
#ROM address={list}

#DEVICE(WRITE_EEPROM=ASYNC)

Relevant Interrupts:
INT_EEPROM

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters
PROGRAM_MEMORY
READ_PROGRAM
FLASH_WRITE_SIZE
FLASH_ERASE_SIZE

Functional Overviews

Reads the program memory location(16
bit or 32 bit depending on the device).

Writes value to program memory location
address.

Erases FLASH_ERASE_SIZE bytes in
program memory.

Writes count bytes to program memory
from dataptr to address. When address is
a mutiple of FLASH_ERASE_SIZE an
erase is also performed.

Read count bytes from program memory
at address to dataptr.

Writes count bytes to program memory
from address (32 bits)

Read count bytes to program memory
from address (32 bits)

Can be used to put program memory data
into the hex file.

Can be used with #DEVICE to prevent the
write function from hanging. When this is
used make sure the eeprom is not written
both inside and outside the ISR.

Interrupt fires when eeprom write is
complete.

Size of program memory

Returns 1 if program memory can be read
Smallest number of bytes written in flash
Smallest number of bytes erased in flash

73

TEST PCD

Example Code:
#ROM 0x300={1,2,3,4}

erase program eeprom(0x00000300) ;
write program eeprom(0x00000300,0x123456) ;

value=read program eeprom(0x00000300) ;
write program memory (0x00000300,data,12);

read program memory (0x00000300,value,12);

// Inserts this data into the hex
file.

// Erases 32 instruction
locations starting at 0x0300

// Writes 0x123456 to 0x0300

// Reads 0x0300 returns 0x123456
// Erases 32 instructions
starting

// at 0x0300 (multiple of erase
block)

// Writes 12 bytes from data to
0x0300

//reads 12 bytes to value from
0x0300

For chips where getenv(“FLASH_ERASE_SIZE”) > getenv(“FLASH_WRITE_SIZE”)

WRITE_PROGRAM_EEPROM

WRITE_PROGRAM_MEMORY

WRITE_ROM_MEMORY

ERASE_PROGRAM_EEPROM

- Writes 3 bytes, does not erase (use
ERASE_PROGRAM_EEPROM)

- Writes any number of bytes, will erase a
block whenever the first (lowest) byte in a
block is written to. If the first address is
not the start of a block that block is not
erased

- While writing, every fourth byte will be
ignored. Fill ignored bytes with 0x00. This
is due to the 32 bit addressing and 24 bit
instruction length on the PCD devices.

- Writes any number of bytes, will erase a
block whenever the first (lowest) byte in a
block is written to. If the first address is
not the start of a block that block is not
erased.

- Erases a block of size
FLASH_ERASE_SIZE. The lowest
address bits are not used.

For chips where getenv(“FLASH_ERASE_SIZE”) = get(“FLASH_WRITE_SIZE?)

WRITE_PROGRAM_EEPROM
WRITE_PROGRAM_MEMORY

WRITE_ROM_MEMORY

74

- Writes 3 bytes, no erase is needed.

- Writes any numbers of bytes, bytes
outside the range of the write block are
not changed. No erase is needed.

- While writing, every fourth byte will be
ignored. Fill ignored bytes with 0x00. This
is due to the 32 bit addressing and 24 bit
instruction length on the PCD devices.

- Writes any numbers of bytes, bytes
outside the range of the write block are
not changed. No erase is needed.

Functional Overviews

ERASE_PROGRAM_EEPROM - Erase a block of size
FLASH_ERASE_SIZE. The lowest
address bits are not used.

QEI

The Quadrature Encoder Interface (QEI) module provides the interface to incremental encoders for
obtaining mechanical positional data.

Relevant Functions:

setup_gei(options, filter,maxcount) Configures the QEI module.

gei_status() Returns the status of the QUI module.
gei_set_count(value) Write a 16-bit value to the position counter.
gei_get_count() Reads the current 16-bit value of the position counter.

Relevant Preprocessor:
None

Relevant Interrupts :
#INT_QEI Interrupt on rollover or underflow of the position counter.

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:

intl6 Value;

setup_qgei(QEI_MODE_X2 | Setup the QEI module
QEI_TIMER_INTERNAL,

QEI_FILTER_DIV_2,QEl_FORWARD);

Value = gei_get_count(); Read the count.

RS232 1/0

These functions and directives can be used for setting up and using RS232 1/0O functionality.

Relevant Functions:

getc() or getch() Gets a character on the receive pin(from the specified stream in

getchar() or fgetc() case of fgetc, stdin by default). Use KBHIT to check if the
character is available.

75

TEST PCD

gets() or fgets()

putc() or putchar() or
fputc()

puts() or fputs()

printf() or fprintf()

kbhit()

setup_uart(baud,[stream])
or
setup_uart_speed(baud,[stream])

assert(condition)

perror(message)

Relevant Preprocessor:
#USE RS232(options)

Relevant Interrupts:
INT_RDA
INT_TBE

Gets a string on the receive pin(from the specified stream in case
of fgets, STDIN by default). Use getc to receive each character
until return is encountered.

Puts a character over the transmit pin(on the specified stream in
the case of fputc, stdout by default)

Puts a string over the transmit pin(on the specified stream in the
case of fputc, stdout by default). Uses putc to send each
character.

Prints the formatted string(on the specified stream in the case of
fprintf, stdout by default). Refer to the printf help for details on
format string.

Return true when a character is received in the buffer in case of
hardware RS232 or when the first bit is sent on the RCV pin in
case of software RS232. Useful for polling without waiting in getc.

Used to change the baud rate of the hardware UART at run-time.
Specifying stream is optional. Refer to the help for more advanced
options.

Checks the condition and if false prints the file name and line to
STDERR. Will not generate code if #DEFINE NODEBUG is used.

Prints the message and the last system error to STDERR.

This directive tells the compiler the baud rate and other options
like transmit, receive and enable pins. Please refer to the #USE
RS232 help for more advanced options. More than one RS232
statements can be used to specify different streams. If stream is
not specified the function will use the last #USE RS232.

Interrupt fires when the receive data available
Interrupt fires when the transmit data empty

Some chips have more than one hardware uart, and hence more interrupts.

Relevant Include Files:
None, all functions built-in

76

Functional Overviews

Relevant getenv() parameters:

UART - Returns the number of UARTSs on this PIC

AUART - Returns true if this UART is an advanced UART

UART_RX — Returns the receive pin for the first UART on this PIC (see PIN_XX)
UART_TX — Returns the transmit pin for the first UART on this PIC

UART2_RX — Returns the receive pin for the second UART on this PIC
UART2_TX — Returns the transmit pin for the second UART on this PIC

Example Code:
/* configure and enable uart, use first hardware UART on PIC */
#use rs232(uartl, baud=9600)

/* print a string */
printf (“enter a character”);

/* get a character */
if (kbhit()) //wait until a character has been received
c = getc(); //read character from UART

RTCC

The Real Time Clock and Calendar (RTCC) module is intended for applications where accurate
time must be maintained for extended periods of time with minimum or no intervention from the
CPU. The key features of the module are:

- Time: Hour, Minute and Seconds.

- 24-hour format (Military Time)

- Calendar: Weekday, Date, Month and Year.

- Alarm Configurable.

- Requirements: External 32.768 kHz Clock Crystal.

Relevant Functions:

setup_rtc (options, This will setup the RTCC module for operation and also allows for
calibration); calibration setup.

rtc_write(time_t datetime) Writes the date and time to the RTCC module.

rtc_read(time_t datetime) Reads the current value of Time and Date from the RTCC module.
setup_rtc_alarm(options, Configures the alarm of the RTCC module.

mask, repeat);

rtc_alarm_write(time_t Writes the date and time to the alarm in the RTCC module.
datetime);

rtc_alarm_read(time_t Reads the date and time to the alarm in the RTCC module.
datetime);

Relevant Preprocessor:

None

77

TEST PCD

Relevant Interrupts :
#INT_RTC Interrupt on Alarm Event or half alarm frequency.

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:

setup_rtc(RTC_ENABLE | Enable RTCC module with seconds clock and no calibration.
RTC_OUTPUT_SECONDS,

0x00);

rtc_write(datetime); Write the value of Date and Time to the RTC module
rtc_read(datetime); Reads the value to a structure time_t.

RTOS

These functions control the operation of the CCS Real Time Operating System (RTOS). This
operating system is cooperatively multitasking and allows for tasks to be scheduled to run at
specified time intervals. Because the RTOS does not use interrupts, the user must be careful to
make use of the rtos_yield() function in every task so that no one task is allowed to run forever.

Relevant Functions:
rtos_run()

rtos_terminate()

rtos_enable(task)

rtos_disable(task)

rtos_msg_poll()
rtos_msg_read()

78

Begins the operation of the RTOS. All task management
tasks are implemented by this function.

This function terminates the operation of the RTOS and
returns operation to the original program. Works as a return
from the rtos_run()function.

Enables one of the RTOS tasks. Once a task is enabled, the
rtos_run() function will call the task when its time occurs. The
parameter to this function is the name of task to be enabled.

Disables one of the RTOS tasks. Once a task is disabled, the
rtos_run() function will not call this task until it is enabled using
rtos_enable(). The parameter to this function is the name of
the task to be disabled.

Returns true if there is data in the task's message queue.

Returns the next byte of data contained in the task's message
queue.

Functional Overviews

rtos_msg_send(task,byte) Sends a byte of data to the specified task. The data is placed
in the receiving task's message queue.

rtos_yield() Called with in one of the RTOS tasks and returns control of
the program to the rtos_run() function. All tasks should call
this function when finished.

rtos_signal(sem) Increments a semaphore which is used to broadcast the
availability of a limited resource.

rtos_wait(sem) Waits for the resource associated with the semaphore to
become available and then decrements to semaphore to claim
the resource.

rtos_await(expre) Will wait for the given expression to evaluate to true before
allowing the task to continue.

rtos_overrun(task) Will return true if the given task over ran its alloted time.

rtos_stats(task,stat) Returns the specified statistic about the specified task. The
statistics include the minimum and maximum times for the
task to run and the total time the task has spent running.

Relevant Preprocessor:
#USE RTOS(options) This directive is used to specify several different RTOS attributes including the
timer to use, the minor cycle time and whether or not statistics should be enabled.

#TASK(options) This directive tells the compiler that the following function is to be an RTOS task.

#TASK specifies the rate at which the task should be called, the maximum time the task shall be allowed
to run, and how large it's queue should be.

Relevant Interrupts:
none

Relevant Include Files:
none all functions are built in

Relevant getenv() Parameters:
none

Example Code:
#USE RTOS(timer=0,minor_cycle=20ms) // RTOS will use timer zero, minor cycle will be 20ms

int sem;
79

TEST PCD

#TASK(rate=1s,max=20ms,queue=5) /I Task will run at a rate of once per second

void task_name(); /l with a maximum running time of 20ms and
/I a 5 byte queue
rtos_run(); // begins the RTOS
rtos_terminate(); /I ends the RTOS
rtos_enable(task_name); I/l enables the previously declared task.
rtos_disable(task_name); /I disables the previously declared task
rtos_msg_send(task_name,5); I/ places the value 5 in task_names queue.
rtos_yield(); // yields control to the RTOS
rtos_sigal(sem); /I signals that the resource represented by sem is available.

For more information on the CCS RTOS please

SPI

SPI™ is a fluid standard for 3 or 4 wire, full duplex communications named by Motorola. Most PIC
devices support most common SPI™ modes. CCS provides a support library for taking advantage
of both hardware and software based SPI™ functionality. For software support, see #USE SPI.

Relevant Functions:

setup_spi(mode) Configure the hardware SPI to the specified mode. The mode configures
setup_spi2 setup_spi2(mode) thing such as master or slave mode, clock speed and
clock/data trigger configuration.

Note: for devices with dual SPI interfaces a second function, setup_spi2(), is provided to configure the
second interface.

spi_data_is_in() Returns TRUE if the SPI receive buffer has a byte of data.
spi_data_is_in2()

spi_write(value) Transmits the value over the SPI interface. This will cause the data to be
spi_write2(value) clocked out on the SDO pin.

spi_read(value) Performs an SPI transaction, where the value is clocked out on the SDO pin
spi_read2(value) and data clocked in on the SDI pin is returned. If you just want to clock in

data then you can use spi_read() without a parameter.
Relevant

Preprocessor:
None

80

Functional Overviews

Relevant Interrupts:

#int_sspA Transaction (read or write) has completed on the indicated peripheral.
#int_ssp2

#int_spil Interrupts on activity from the first SPI module

#int_spi2 Interrupts on activity from the second SPI module

Relevant Include Files:
None, all functions built-in to the compiler.

Relevant getenv() Parameters:
SPI Returns TRUE if the device has an SPI peripheral

Example Code:
/lconfigure the device to be a master, data transmitted on H-to-L clock transition
setup_spi(SPI_MASTER | SPI_H_TO_L | SPI_CLK_DIV_16);

spi_write(0x80); /Iwrite 0x80 to SPI device

value=spi_read(); /Iread a value from the SPI device

value=spi_read(0x80); //write 0x80 to SPI device the same time you are reading a value.
TimerA

These options lets the user configure and use timerA. It is available on devices with Timer A
hardware. The clock/counter is 8 bit. It counts up and also provides interrupt on overflow. The
options available are listed in the device's header file.

Relevant Functions:

setup_timer_A(mode) Disable or sets the source and prescale for timerA
set_timerA(value) Initializes the timerA clock/counter
value=get_timerA() Returns the value of the timerA clock/counter

Relevant Preprocessor:

None

Relevant Interrupts :

INT_TIMERA Interrupt fires when timerA overflows

Relevant Include Files: None, all functions built-in

81

TEST PCD

Relevant getenv() parameters:

TIMERA

Example Code:
setup_timer_A(TA_OFF);
or

setup_timer_A

(TA_INTERNAL | TA_DIV_8);

set_timerA(0);

time=get_timerA();

TimerB

Returns 1 if the device has timerA

/ldisable timerA

/Isets the internal clock as source

/land prescale as 8. At 20MHz timerA will increment
/levery 1.6us in this setup and overflows every
/1409.6us

[lthis sets timerA register to 0

/lthis will read the timerA register value

These options lets the user configure and use timerB. It is available on devices with Timer B
hardware. The clock/counter is 8 bit. It counts up and also provides interrupt on overflow. The
options available are listed in the device's header file.

Relevant Functions:
setup_timer_B(mode)
set_timerB(value)
value=get_timerB()
Relevant Preprocessor:
None

Relevant Interrupts :
INT_TIMERB

Relevant Include Files:

Relevant getenv() parameters:

82

Disable or sets the source and prescale for timerB
Initializes the timerB clock/counter

Returns the value of the timerB clock/counter

Interrupt fires when timerB overflows

None, all functions built-in

Functional Overviews

TIMERB Returns 1 if the device has timerB

Example Code:

setup_timer_B(TB_OFF); /[disable timerB

or

setup_timer_B //sets the internal clock as source

(TB_INTERNAL | TB_DIV_8); /land prescale as 8. At 20MHz timerB will increment

/levery 1.6us in this setup and overflows every

//409.6us
set_timerB(0); [lthis sets timerB register to 0
time=get_timerB(); [lthis will read the timerB register value

Timers

The 16-bit DSC and MCU families implement 16 bit timers. Many of these timers may be
concatenated into a hybrid 32 bit timer. Also, one timer may be configured to use a low power
32.768 kHz oscillator which may be used as a real time clock source.

Timerl is a 16 bit timer. It is the only timer that may not be concatenated into a hybrid 32 bit timer.
However, it alone may use a synchronous external clock. This feature may be used with a low
power 32.768 kHz oscillator to create a real-time clock source.

Timers 2 through 9 are 16 bit timers. They may use external clock sources only asynchronously
and they may not act as low power real time clock sources. They may however be concatenated
into 32 bit timers. This is done by configuring an even numbered timer (timer 2, 4, 6 or 8) as the
least significant word, and the corresponding odd numbered timer (timer 3, 5, 7 or 9, respectively)
as the most significant word of the new 32 bit timer.

Timer interrupts will occur when the timer overflows. Overflow will happen when the timer
surpasses its period, which by default is OxFFFF. The period value may be changed when using
setup_timer_X.

Relevant Functions:

setup_timer_X() Configures the timer peripheral. X may be any valid timer for the target
device. Consult the target datasheet or use getenv to find the valid
timers.

get_timerX() Retrieves the current 16 bit value of the timer.

get_timerXY/() Gets the 32 bit value of the concatenated timers X and Y (where XY

83

TEST PCD

may only be 23, 45, 67, 89)
set_timerX() Sets the value of timerX

set_timerXY() Sets the 32 bit value of the concatenated timers X and Y (where XY
may only be 23, 45, 67, 89)

Relevant Preprocessor:
None

Relevant Interrupts:
#int_timerX Interrupts on timer overflow (period match). X is any valid timer number.

*When using a 32-bit timer, the odd numbered timer-interrupt of the hybrid timer must be used. (i.e.
when using 32-bit Timer23, #int_timer3)

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMERX Returns 1 if the device has the timer peripheral X. X may be 1 - 9

Example Code:

/* Setup timerl as an external real time clock that increments every 16 clock
cycles */

setup timerl (T1 EXTERNAL RTC | T2 DIV BY 16);

/* Setup timer2 as a timer that increments on every instruction cycle and has a
period of 0x0100 */

setup timer2 (TMR INTERNAL, 0x0100);

byte value = 0x00;

value = get timer2(); //retrieve the current value of timer2

Voltage Reference

These functions configure the voltage reference module. These are available only in the supported
chips.

Relevant Functions:

setup_vref(mode| value) Enables and sets up the internal voltage reference
value.
Constants are defined in the devices .h file.
Relevant Preprocessor:
None

Relevant Interrupts:
None

84

Functional Overviews

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
VREF Returns 1 if the device has VREF

Example Code:
For eg:
For PIC12F675
#INT_COMP //comparator interrupt handler
void isr() {
safe_conditions=FALSE;
printf"WARNING!! Voltage level is above 3.6 V. \r\n");

}
setup_comparator(A1_VR_OUT_ON_AZ2); /I sets two comparators(Al and VR and A2 as the
output)
setup_vref(VREF_HIGH|15); /Isets 3.6(vdd *value/32 +vdd/4) if vdd is 5.0V
enable_interrupts(INT_COMP); /lenables the comparator interrupt
enable_interrupts(GLOBAL); /lenables global interrupts

WDT or Watch Dog Timer

Different chips provide different options to enable/disable or configure the WDT.

Relevant Functions:

setup_wdt() Enables/disables the wdt or sets the prescalar.

restart_wdt() Restarts the wdt, if wdt is enables this must be periodically called to
prevent a timeout reset.

For PCB/PCM chips it is enabled/disabled using WDT or NOWDT fuses whereas on PCH device it is
done using the setup_wadt function.

The timeout time for PCB/PCM chips are set using the setup_wdt function and on PCH using fuses like
WDT16, WDT256 etc.

RESTART_WDT when specified in #USE DELAY, #USE 12C and #USE RS232 statements like this
#USE DELAY(clock=20000000, restart_wdt) will cause the wdt to restart if it times out during the delay
or I2C_READ or GETC.

Relevant Preprocessor:
#FUSES WDT/NOWDT Enabled/Disables wdt in PCB/PCM devices
#FUSES WDT16 Sets ups the timeout time in PCH devices

Relevant Interrupts:

85

TEST PCD

None

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
For eg:
For PIC16F877
#fuses wdt
setup_wdt(WDT_2304MS);
while(true){
restart_wdt();
perform_activity();
}
For PIC18F452
#fuse WDT1
setup_wdt(WDT_ON);
while(true){
restart_wdt();
perform_activity();
}

Some of the PCB chips are share the WDT prescalar bits with timer0 so the WDT prescalar constants
can be used with setup_counters or setup_timer0 or setup_wdt functions.

86

PRE-PROCESSOR

Voo
e

C Compiler

#ASM #ENDASM

Syntax:

Elements:

Purpose:

Examples:

#ASM or #ASM ASIS code #ENDASM

code is a list of assembly language instructions

The lines between the #ASM and #ENDASM are treated as
assembly code to be inserted. These may be used anywhere an
expression is allowed. The syntax is described on the following
page. Function return values are sent in WO for 16-bit, and WO,
wlfor 32 bit. Be aware that any C code after the #ENDASM and
before the end of the function may corrupt the value. If the second
form is used with ASIS then the compiler will not do any
optimization on the assembly. The assembly code is used as-is.
int find_parity(int data){int count;#asm MOV #0x08, WO MOV WO,
count CLR WO loop:XOR.B data,W0 RRC data, WO DEC count,F
BRA NZ, loop MOV #0x01,W0 ADD count, FMOV count, WO
MOV W0, RETURN_ #endasm }

Example Files: ex_glint.c

Also See: None

ADD Wa,Wb,wd Wd = Wa+Wb

ADD W WO = f+Wd

ADD litto,wd wd = lit10+Wd

ADD Wa,lit5,wd wd = lits+Wa

ADD f,F f=f+wd

ADD acc Acc = AccA+AccB

ADD Wd,{lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B lit10,wd wd = litl0+Wd (byte)

ADD wd {lit4},acc Acc = Acc+(Wa shifted slit4)
ADD.B lit10,wWd wd = litl0+Wd (byte)
ADD.B = f = f+Wd (byte)

ADD.B Wa,Wb,Wd wd = Wa+Wb (byte)

87

TEST PCD

ADD.B Wa,lit5,wWd wd = lit5s+Wa (byte)
ADD.B fw WO = f+Wd (byte)

ADDC fw wd = f+Wa+C

ADDC litao,wd wd = litl0+Wd+C

ADDC Wa,lit5,wd wd = lit5+Wa+C

ADDC f,F wd = f+Wa+C

ADDC Wa,wb,wd Wd = Wa+Wb+C

ADDC.B litto,wd Wd = litl0+Wd+C (byte)
ADDC.B Wa,Wb,wd Wd = Wa+Wb+C (byte)
ADDC.B Wa,lit5,Wd Wwd = lit5+Wa+C (byte)
ADDC.B fw wd = f+Wa+C (byte)
ADDC.B f.F wd = f+Wa+C (byte)

AND Wa,Wb,wd Wd =Wa.&Whb

AND litao,wd wd = lit10.&.Wd

AND W W0 =f.&Wa

AND f,F f=f.&Wa

AND Wa,lit5,wd wd = lit5.& Wa

AND.B fw WO = f.&Wa (byte)

AND.B Wa,Wb,wd Wd =Wa.& Wb (byte)
AND.B lit1o,wd Wd = 1it10.&.Wd (byte)
AND.B f,F f =f.&Wa (byte)

AND.B Wa,lit5,Wd wd = lit5.&Wa (byte)

ASR f.w WO =f>>1 arithmetic
ASR f,F f=f>>1 arithmetic

ASR Wa,wd Wd=Wa>>1 arithmetic
ASR Wa,lit4,Wd Wd =Wa >> lit4 arithmetic
ASR Wa,Wb,wd Wd = Wa >> Wb arithmetic
ASR.B f,F f=f>>1 arithmetic (byte)
ASR.B fw WO =f>>1 arithmetic (byte)

88

PRE-PROCESSOR

ASR.B Wa,Wd Wd=Wa>>1 arithmetic (byte)
BCLR f,.B f.bit=0

BCLR wd,B Wa.bit=0

BCLR.B wd,B Wa.hit = 0 (byte)

BRA a Branch unconditionally

BRA wd Branch PC+Wa

BRA BZ a Branch if Zero

BRAC a Branch if Carry (no borrow)

BRA GE a Branch if greater than or equal
BRA GEU |a Branch if unsigned greater than or equal
BRA GT a Branch if greater than

BRA GTU |a Branch if unsigned greater than
BRA LE a Branch if less than or equal

BRA LEU a Branch if unsigned less than or equal
BRALT a Branch if less than

BRA LTU a Branch if unsigned less than
BRA N a Branch if negative

BRA NC a Branch if not carry (Borrow)

BRA NN a Branch if not negative

BRANOV |a Branch if not Overflow

BRA NZ a Branch if not Zero

BRA OA a Branch if Accumulator A overflow
BRA OB a Branch if Accumulator B overflow
BRA OV a Branch if Overflow

BRA SA a Branch if Accumulator A Saturate
BRA SB a Branch if Accumulator B Saturate
BRA Z a Branch if Zero

BREAK ICD Break

BSET wd,B Wa.bit=1

89

TEST PCD

BSET f,.B f.bit=1

BSET.B wd,B Wa.bit = 1 (byte)
BSW.C Wa,Wd WaWb=C

BSW.z Wa,wd WaWb=2

BTG wd,B Wa.bit = ~Wa.bit
BTG f,B f.bit = ~f.bit

BTG.B Wd,B Wa.bit = ~Wa.bit (byte)
BTSC f,B Skip if f.bit=0

BTSC wd,B Skip if Wa.bit4 =0
BTSS f,B Skip if f.bit =1

BTSS wd,B Skip if Wa.bit = 1
BTST f,.B Z = f.bit

BTST.C Wa,Wd C =WaWb

BTST.C wd,B C = Wa.hit

BTST.Z wd,B Z = Wa.bit

BTST.Z Wa,Wd Z=WaWb

BTSTS f,.B Z =f.bit; fhit=1
BTSTS.C wd,B C =Wa.hit; Wa.hit=1
BTSTS.Z wd,B Z = Wa.bit; Wa.bit=1
CALL a Call subroutine

CALL wd Call [Wa]

CLR f,F f=0

CLR acc,da,dc,pi Acc = 0; prefetch=0
CLR W W0=0

CLR wd wd=0

CLR.B fw WO =0 (byte)

CLR.B wd Wd = 0 (byte)

CLR.B fF f=0 (byte)

CLRWDT Clear WDT

90

PRE-PROCESSOR

COM f,F f=~f

COM W WO = ~f

COM Wa,Wd Wwd = ~Wa

COM.B f,w WO = ~f (byte)

COM.B Wa,Wd wd = ~Wa (byte)

COM.B f,F f=~f (byte)

CP W, f Status set for f - WO

CP Wa,wd Status set for Wb &€“ Wa

CP wd.,lits Status set for Wa &€“ litd

CP.B W, f Status set for f - WO (byte)

CP.B Wa,wd Status set for Wb &€“ Wa (byte)
CpP.B wd,lit5 Status set for Wa &€" lit5 (byte)
CPO wd Status set for Wa &€ 0

CPO W, f Status set for f 4€“ 0

CP0.B wd Status set for Wa &€“ 0 (byte)
CPO.B W.f Status set for f &€ 0 (byte)

CPB Wd,lits Status set for Wa a€“ it 4€“ C
CPB Wa,Wd Status set for Wb 4€“ Wa 3€“ C
CPB W, f Status set for f 4€* W0 - C
CPB.B Wa,Wd Status set for Wb &€ Wa a€“ C (byte)
CPB.B wd,lits Status set for Wa &€" lits 8€“ C (byte)
CPB.B W f Status set for f 8€“ WO - C (byte)
CPSEQ Wa,wd Skip if Wa =Whb

CPSEQ.B (WaWd Skip if Wa = Wb (byte)

CPSGT Wa,Wd Skip if Wa > Wb

CPSGT.B |WaWd Skip if Wa > Wb (byte)

CPSLT Wa,wd Skip if Wa < Wb

CPSLT.B |WaWwd Skip if Wa < Wb (byte)

CPSNE Wa,Wd Skip if Wa != Wb

91

TEST PCD

CPSNE.B (WaWd Skip if Wa !'= Wb (byte)

DAW.B wd Wa = decimal adjust Wa

DEC Wa,Wd Wd =Wa &€“ 1

DEC f,w WO =fa€“ 1

DEC f,F f=fa€ 1

DEC.B f,F f=fa€" 1 (byte)

DEC.B f,w WO = f &€ 1 (byte)

DEC.B Wa,wd Wd =Wa &€* 1 (byte)

DEC2 Wa,Wd Wd =Wa &€* 2

DEC2 fw WO =fa€“2

DEC2 f,F f=fa€" 2

DEC2.B Wa,wd Wd =Wa &€* 2 (byte)

DEC2.B f,w WO = f 4€" 2 (byte)

DEC2.B f,F f=fa€" 2 (byte)

DISI lit14 Disable Interrupts lit14 cycles

DIV.S Wa,Wd Signed 16/16-bit integer divide
DIV.SD Wa,wd Signed 16/16-bit integer divide (dword)
DIV.U Wa,wd UnSigned 16/16-bit integer divide
DIV.UD Wa,Wd UnSigned 16/16-bit integer divide (dword)
DIVF Wa,Wd Signed 16/16-bit fractional divide
DO litl4,a Do block lit14 times

DO Wd,a Do block Wa times

ED Wd*Wd,acc,da,db Euclidean Distance (No Accumulate)
EDAC Wd*Wd,acc,da,db Euclidean Distance

EXCH Wa,wd Swap Wa and Wb

FBCL Wa,Wd Find bit change from left (Msb) side
FEX ICD Execute

FF1L Wa,Wd Find first one from left (Msb) side
FF1R Wa,Wd Find first one from right (Lsb) side

92

PRE-PROCESSOR

GOTO a GoTo

GOTO wd GoTo [Wa]

INC fw Wo=f+1

INC Wa,wd wd=Wa+1

INC f,F f=f+1

INC.B Wa,Wd wd = Wa + 1 (byte)
INC.B f,F f=f+1 (byte)

INC.B fwW WO = f + 1 (byte)
INC2 W WOo=f+2

INC2 Wa,Wd Wd=Wa + 2

INC2 f,F f=f+2

INC2.B fW WO = f + 2 (byte)
INC2.B f.F f=f+2 (byte)
INC2.B Wa,Wd Wd = Wa + 2 (byte)
IOR litto,wd wd = 1it10 | wd

IOR f.F f=f|wa

IOR fw WO =f|Wa

IOR Wa,lit5,wd wd =Wa.|.lits

IOR Wa,Wb,wd wWd =Wa.|.Wb

IOR.B Wa,Wb,wd Wd =Wa.|.Wb (byte)
IOR.B fW WO = f | Wa (byte)
IOR.B lit1o,wd Wwd = 1it10 | Wd (byte)
IOR.B Wa,lit5,wd Wd =Wa.|.lits (byte)
IOR.B f,F f=f| Wa (byte)

LAC wd {lit4},acc Acc = Wa shifted slit4
LNK lit14 Allocate Stack Frame
LSR fw Wo=f>>1

LSR Wa,lit4,Wd Wd = Wa >> lit4

LSR Wa,Wd Wd=Wa>>1

93

TEST PCD

LSR f,F f=f>>1

LSR Wa,Wb,wd Wd = Wb >>Wa

LSR.B fW WO =f>> 1 (byte)

LSR.B f,F f=1>>1 (byte)

LSR.B Wa,Wd wd = Wa >> 1 (byte)
MAC Wd*Wd,acc,da,dc Acc = Acc + Wa * Wa; {prefetch}
MAC Wd*Wc,acc,da,dc,pi Acc = Acc + Wa * Wh; {{[W13] = Acc}; {prefetch}
MOV W, f f=Wa

MOV W WO =f

MOV f,F f=f

MOV wd,? F=Wa

MOV Walit, Wd Wd = [Wa +SIit10]

MOV ?,.wd wd =f

MOV lit16,wd wd = lit16

MOV Wa,wd Wwd =Wa

MOV Wa,Wd+lit [Wd + Slit10] = Wa
MOV.B lit8,wd wd = lit8 (byte)

MOV.B W f f = Wa (byte)

MOV.B fw WO =f (byte)

MOV.B f,F f=f (byte)

MOV.B Warlit, Wd Wwd = [Wa +Slit10] (byte)
MOV.B Wa,Wd+lit [wd + Slit10] = Wa (byte)
MOV.B Wa,Wd Wd =Wa (byte)

MOV.D Wa,Wd Wd:wWd+1 = Wa:Wa+1l
MOV.D Wa,Wd Wd:wWd+1 = Wa:Wa+1l
MOVSAC acc,da,dc,pi Move ?to ? and ? To ?
MPY Wd*Wc,acc,da,dc Acc = Wa*Wb

MPY Wd*Wd,acc,da,dc Square to Acc

MPY.N Wd*Wc,acc,da,dc Acc = -(Wa*Wb)

94

PRE-PROCESSOR

MSC Wd*Wc,acc,da,dc,pi Acc = Acc a€* Wa*Wb

MUL W.f W3W2=f*Wa

MUL.B w.f W3:W2 = f * Wa (byte)

MUL.SS Wa,Wd {Wd+1,wWd}= sign(Wa) * sign(Wb)
MUL.SU Wa,wd {wd+1,wd} = sign(Wa) * unsign(Wb)
MUL.SU Wa,lit5,Wd {Wd+1,wWd}= sign(Wa) * unsign(lit5)
MUL.US Wa,Wd {Wd+1,wd} = unsign(Wa) * sign(Wb)
MUL.UU Wa,Wd {Wd+1,wd} = unsign(Wa) * unsign(Whb)
MUL.UU Wa,lit5,wd {Wd+1,wWd} = unsign(Wa) * unsign(lit5)
NEG f,F f=-f

PUSH wd Push Wa to TOS

PUSH.D wd PUSH double Wa:Wa + 1 to TOS
PUSH.S PUSH shadow registers

PWRSAV |litl Enter Power-saving mode lit1

RCALL a Call (relative)

RCALL wd Call Wa

REPEAT lit14 Repeat next instruction (lit14 + 1) times
REPEAT wd Repeat next instruction (Wa + 1) times
RESET Reset

RETFIE Return from interrupt enable

RETLW lit10,Wd Return; Wa = [it10

RETLW.B |lit10,wd Return; Wa = 1it10 (byte)

RETURN Return

RLC Wa,Wd Wd = rotate left through Carry Wa

RLC f,F f = rotate left through Carry f

RLC fW WO = rotate left through Carry f

RLC.B f,F f = rotate left through Carry f (byte)
RLC.B W WO = rotate left through Carry f (byte)
RLC.B Wa,Wd Wd = rotate left through Carry Wa (byte)

95

TEST PCD

RLNC Wa,Wd Wd = rotate left (no Carry) Wa

RLNC f,F f = rotate left (no Carry) f

RLNC fw WO = rotate left (no Carry) f

RLNC.B W WO = rotate left (no Carry) f (byte)
RLNC.B Wa,Wd Wd = rotate left (no Carry) Wa (byte)
RLNC.B f,F f = rotate left (no Carry) f (byte)

RRC f,F f = rotate right through Carry f

RRC Wa,Wd Wd = rotate right through Carry Wa
RRC W WO = rotate right through Carry f
RRC.B fw WO = rotate right through Carry f (byte)
RRC.B f,F f = rotate right through Carry f (byte)
RRC.B Wa,Wd Wd = rotate right through Carry Wa (byte)
RRNC f,F f = rotate right (no Carry) f

RRNC W WO = rotate right (no Carry) f

RRNC Wa,wd Wd = rotate right (no Carry) Wa
RRNC.B f,F f = rotate right (no Carry) f (byte)
RRNC.B Wa,wd Wd = rotate right (no Carry) Wa (byte)
RRNC.B W WO = rotate right (no Carry) f (byte)
SAC acc,{lit4},wd Wd = Acc slit 4

SAC.R acc,{lit4},wd Wd = Acc slit 4 with rounding

SE Wa,wd Wd = sign-extended Wa

SETM wd Wd = OxFFFF

SETM f,F WO = OXFFFF

SETM.B wd Wd = OXFFFF (byte)

SETM.B fW WO = OXFFFF (byte)

SETM.B fF WO = OXFFFF (byte)

SFTAC acc,wd Arithmetic shift Acc by (Wa)

SFTAC acc,litb Arithmetic shift Acc by Slit6

SL fw Wo=f<<1

96

PRE-PROCESSOR

SL Wa,wWb,wd Wd =Wa <<Wb

SL Wa,lit4,Wd Wd = Wa << lit4

SL Wa,Wd Wd=Wa<<1

SL f,F f=f<<1

SL.B fW WO =f << 1 (byte)

SL.B Wa,Wd Wd = Wa << 1 (byte)

SL.B f,F f=f<<1 (byte)

SSTEP ICD Single Step

SUB f,F f=fa&€*"Wo

SUB f,w WO = f 4€“ WO

SUB Wa,Wb,wd Wd = Wa &€“ Wb

SUB Wa,lit5,wd Wd = Wa &€" lits

SuUB acc Acc = AccA &€" AccB

SUB litao,wd Wd =Wd &€" 1it10

SUB.B Wa,lits,wd Wd = Wa &€ |it5 (byte)
SUB.B lit1o,wd Wd = Wd &€" lit10 (byte)
SUB.B fW WO = f 4€“ WO (byte)
SUB.B Wa,Wb,Wd Wd = Wa 3€“ Wb (byte)
SUB.B f,F f=1fa€" WO (byte)

SUBB f,w WO =f &€“ W0 3€“C

SUBB Wa,Whb,wd Wd =Wa &€“" Wb a€“ C
SUBB f,F f=fa€"Woa€“C

SUBB Wa,lit5,wd Wd =Wa &€"lit5 - C

SUBB litto,wd Wd =Wd &€" 1it10 4€“ C
SUBB.B litro,wd Wd = Wd 3€“ 1it10 4€“ C (byte)
SUBB.B Wa,Wb,Wd Wd = Wa &€“ Wb a€“ C (byte)
SUBB.B f,F f=1fa€" W0 &€" C (byte)
SUBB.B Wa,lits,wd Wd = Wa a€“1it5 - C (byte)
SUBB.B f,w WO = f 4€“ WO 3€" C (byte)

97

TEST PCD

SUBBR Wa,lit5,wd Wd = 1its 8€“Wa - C

SUBBR f,w WO =WO0 &€“f4€" C

SUBBR f,F f=WO0a€"fa€" C

SUBBR Wa,Wb,Wd Wd=Wa &€“Wb-C

SUBBR.B |[f,F f=WO0 a&€" f4€" C (byte)

SUBBR.B [f,W WO =WO0 &€ f 4€" C (byte)
SUBBR.B [Wa,Wb,Wd Wd =Wa &€“ Wb - C (byte)
SUBBR.B |Wa,lit5,wd Wd = 1its 8€“ Wa - C (byte)

SUBR Wa,lit5,wd Wd = lit5 4€“ Wb

SUBR f,F f=WO0a€“f

SUBR Wa,Wh,Wd Wd =Wa a€“Wb

SUBR f,w W0 = W0 &€" f

SUBR.B Wa,Wb,Wd Wd =Wa a€“ Wb (byte)

SUBR.B f,F f=WO0a€“f (byte)

SUBR.B Wa,lit5,wd Wd = lits 4€“ Wb (byte)

SUBR.B f,w WO =WO0 a€“f (byte)

SWAP wd Wa = byte or nibble swap Wa
SWAP.B wd Wa = byte or nibble swap Wa (byte)
TBLRDH |Wa,wd Wd = ROM[Wa] for odd ROM
TBLRDH.B |[Wa,Wd Wd = ROM[Wa] for odd ROM (byte)
TBLRDL Wa,Wd Wd = ROM[Wa] for even ROM
TBLRDL.B |Wa,Wwd Wd = ROM[Wa] for even ROM (byte)
TBLWTH |Wa,wd ROM[Wa] = Wd for odd ROM
TBLWTH.B |Wa,wd ROM[Wa] = Wd for odd ROM (byte)
TBLWTL Wa,Wd ROM[Wa] = Wd for even ROM
TBLWTL.B |[Wa,Wwd ROM[Wa] = Wd for even ROM (byte)
ULNK Deallocate Stack Frame

URUN ICD Run

XOR Wa,Wb,wd Wd =Wa"Wb

98

PRE-PROCESSOR

XOR f,F f=f2"WO0
XOR W W0 =f~WO0
XOR Wa,lit5,wd wd =Wa " lits
XOR litto,wd Wd = Wd 7 lit10
XOR.B litto,wd Wd = Wd 7 it10 (byte)
XOR.B fw WO = f A WO (byte)
XOR.B Wa,lit5,Wd wd = Wa ~ lit5 (byte)
XOR.B Wa,Wb,wd WwWd = Wa ~» Wb (byte)
XOR.B f,F f=f2WO0 (byte)
ZE Wa,Wd Wd =Wa & FF
#BANK_ DMA
Syntax: #BANK_DMA
Elements: None
Purpose: Tells the compiler to assign the data for the next variable, array or structure into DMA
bank
Examples: #bank dma
struct {
int r w;
int c_w;

long unused :2;
long data: 4;

}a port; //the data for a port will be forced into memory bank
DMA

Example None

Files:

Also See: None

99

TEST PCD

#BANKX

Syntax: #BANKX
Elements: None
Purpose: Tells the compiler to assign the data for the next variable, array, or structure into
Bank X.
Examples: #bankx
struct {
int r w;
int c_ d;

long unused : 2;

long data : 4;

} a port;

// The data for a port will be forced into memory bank x.

Example None
Files:
Also See: None

#BANKY

Syntax: #BANKY
Elements: None
Purpose: Tells the compiler to assign the data for the next variable, array, or structure into
Bank Y.
Examples: #banky
struct {
int r w;
int c_d;

long unused : 2;

long data : 4;

} a port;

// The data for a port will be forced into memory bank y.

Example None
Files:
Also See: None

100

#BIT

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

#BUILD

Syntax:

Elements:

PRE-PROCESSOR

#BIT id =x.y
id is a valid C identifier,
X is a constant or a C variable,

y is a constant 0-7 (for 8-bit PICs)
y is a constant 0-15 (for 16-bit PICs)

A new C variable (one bit) is created and is placed in memory at byte x and bity. This
is useful to gain access in C directly to a bit in the processors special function register
map. It may also be used to easily access a bit of a standard C variable.

#bit T 1 IF = 0x 84.3

TSBS:1IF = 0; // Clear Timer 0 interrupt flag

int result;
#bit result odd = result.0

if (result odd)

ex_glint.c

#BYTE, #RESERVE, #LOCATE, #WORD

#BUILD(segment = address)

#BUILD(segment = address, segment = address)
#BUILD(segment = start:end)

#BUILD(segment = start: end, segment = start: end)
#BUILD(nosleep)

#BUILD(segment = size) : For STACK use only
#BUILD(ALT_INTERRUPT)

segment is one of the following memory segments which may be assigned a location:
RESET, INTERRUPT , or STACK

address is a ROM location memory address. Start and end are used to specify a
range in memory to be used. Start is the first ROM location and end is the last ROM
location to be used.

101

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Purpose:

Examples:

Example
Files:

Also See:

102

RESET will move the compiler's reset vector to the specified location. INTERRUPT
will move the compiler's interrupt service routine to the specified location. This just
changes the location the compiler puts it's reset and ISR, it doesn't change the actual
vector of the PIC. If you specify a range that is larger than actually needed, the extra
space will not be used and prevented from use by the compiler.

STACK configures the range (start and end locations) used for the stack, if not
specified the compiler uses the last 256 bytes. The STACK can be specified by only
using the size parameters. In this case, the compiler uses the last RAM locations on
the chip and builds the stack below it.

ALT_INTERRUPT will move the compiler's interrupt service routine to the alternate
location, and configure the PIC to use the alternate location.

Nosleep is used to prevent the compiler from inserting a sleep at the end of main()

When linking multiple compilation units, this directive must appear exactly the same
in each compilation unit.

These directives are commonly used in bootloaders, where the reset and interrupt
needs to be moved to make space for the bootloading application.

/* assign the location where the compiler will
place the reset and interrupt vectors */
#build (reset=0x200, interrupt=0x208)

/* assign the location and fix the size of the segments
used by the compiler for the reset and interrupt vectors */

#build (reset=0x200:0x207, interrupt=0x208:0x2ff)

/* assign stack space of 512 bytes */
#build (stack=0x1E00:0x1FFF)

#build (stack= 0x300) // When Start and End locations are not

specified, the compiler uses the last RAM locations available on
the chip.

None

#LOCATE, #RESERVE, #ROM, #ORG

#BYTE

Syntax:

Elements:

Purpose:

Examples:

Example
Files:
Also See:

#CASE

Syntax:
Elements:

Purpose:

Examples:

PRE-PROCESSOR

#BYTE id = x

id is a valid C identifier,
X is a C variable or a constant

If the id is already known as a C variable then this will locate the variable at address
X. In this case the variable type does not change from the original definition. If the id is
not known a new C variable is created and placed at address x with the type int (8 bit)

Warning: In both cases memory at x is not exclusive to this variable. Other variables
may be located at the same location. In fact when x is a variable, then id and x share
the same memory location.

#byte status register = 0x42
#byte b port = 0x02C8

struct {
short int r w;

short int c_d;

int data : 6 ; } E port;
#byte a port = 0x2DA

a port.c d = 1;
ex_glint.c

#BIT, #LOCATE, #RESERVE, #WORD

#CASE

None

Will cause the compiler to be case sensitive. By default the compiler is case insensitive.
When linking multiple compilation units, this directive must appear exactly the same in

each compilation unit.

Warning: Not all the CCS example programs, headers and drivers have been tested
with case sensitivity turned on.

#case

103

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Example
Files:

Also See:

DATE

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

Also See:

int STATUS;

void func () {
int status;

STATUS = status; // Copy local status to
//global
}

ex_cust.c

None

__DATE__
None

This pre-processor identifier is replaced at compile time with the date of the compile in
the form: "31-JAN-03"

printf ("Software was compiled on ");
printf(DATE);

None

None

#DEFINE

Syntax:

Elements:

Purpose:

104

#DEFINE id text
or
#DEFINE id(x,y...) text

id is a preprocessor identifier, text is any text, X,y and so on are local preprocessor
identifiers, and in this form there may be one or more identifiers separated by commas.

Used to provide a simple string replacement of the ID with the given text from this point
of the program and on.

In the second form (a C macro) the local identifiers are matched up with similar

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

PRE-PROCESSOR

identifiers in the text and they are replaced with text passed to the macro where it is
used.

If the text contains a string of the form #idx then the result upon evaluation will be the
parameter id concatenated with the string x.

If the text contains a string of the form #idx#idy then parameter idx is concatenated with
parameter idy forming a new identifier.

Within the define text two special operators are supported:
#x is the stringize operator resulting in "x"
x#tty is the concatination operator resulting in xy

Examples: #define BITS 8
a=a+BITS; //same as a=a+8;
#define hi (x) (x<<4)
a=hi (a) ; //same as a=(a<<4) ;
#define isequal (a,b) (primary ##a[bl==backup ##al[b])

// usage iseaqual (names,5) 1is the same as
// (primary names[5]==backup names[5])

#define str(s) #s

#define part (device) #include str (device#i#.h)
// usage part (16F887) is the same as
// #include "16F887.h"

Example ex_stwt.c, ex_macro.c
Files:
Also See: #UNDEF, #IFDEF, #IFNDEF

#DEFINEDINC

Syntax: value = definedinc(variable);
Parameters: variable is the name of the variable, function, or type to be checked.
Returns: A C status for the type of id entered as follows:

0 — not known

1 — typedef or enum

2 — struct or union type
3 — typemod qualifier
4 — function prototype

105

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()

TEST PCD

5 — defined function

6 — compiler built-in function
7 — local variable

8 — global variable

Function: This function checks the type of the variable or function being passed in and returns a
specific C status based on the type.

Availability: All devices
Requires: None.
Examples: intx,y=0;

y = definedinc(x); //'y will return 7 — x is a local variable

Example None
Files:
Also See: None

#DEVICE

Syntax: #DEVICE chip options
#DEVICE Compilation mode selection

Elements: Chip Options-

chip is the name of a specific processor (like: dsPIC33FJ64GP306), To get a current list
of supported devices:

START | RUN | CCSC +Q

Options are qualifiers to the standard operation of the device. Valid options are:

ADC=x Where x is the number of bits read_adc()
should return

ICD=TRUE Generates code compatible with Microchips
ICD debugging hardware.

ICD=n Four chips with multiple ICSP ports specify the
port number being used. The default is 1.

WRITE_EEPROM=ASYNC Prevents WRITE_EEPROM from hanging while

writing is taking place. When used, do not write
to EEPROM from both ISR and outside ISR.

WRITE_EEPROM = NOINT Allows interrupts to occur while the
write_eeprom() operations is polling the done
bit to check if the write operations has

106

PRE-PROCESSOR

completed. Can be used as long as no
EEPROM operations are performed during an

ISR.

HIGH_INTS=TRUE Use this option for high/low priority interrupts on
the PIC® 18.

%f=. No 0 before a decimal pint on %f numbers less
than 1.

OVERLOAD=KEYWORD Overloading of functions is now supported.
Requires the use of the keyword for
overloading.

OVERLOAD=AUTO Default mode for overloading.

PASS_STRINGS=IN_RAM A new way to pass constant strings to a

function by first copying the string to RAM and
then passing a pointer to RAM to the function.

CONST=READ_ONLY Uses the ANSI keyword CONST definition,
making CONST variables read only, rather than
located in program memory.

CONST=ROM Uses the CCS compiler traditional keyword
CONST definition, making CONST variables
located in program memory.

NESTED_INTERRUPTS=TRUE Enables interrupt nesting for PIC24, dsPIC30,
and dsPIC33 devices. Allows higher priority
interrupts to interrupt lower priority interrupts.

NORETFIE ISR functions (preceeded by a #int_xxx) will use
a RETURN opcode instead of the RETFIE
opcode. This is not a commonly used option;
used rarely in cases where the user is writing
their own ISR handler.

Both chip and options are optional, so multiple #DEVICE lines may be used to fully define
the device. Be warned that a #DEVICE with a chip identifier, will clear all previous
#DEVICE and #FUSE settings.

Compilation mode selection-

The #DEVICE directive supports compilation mode selection. The valid keywords are
CCS2, CCS3, CCS4 and ANSI. The default mode is CCS4. For the CCS4 and ANSI
mode, the compiler uses the default fuse settings NOLVP, PUT for chips with these
fuses. The NOWDT fuse is default if no call is made to restart_wdt().

CCs4 This is the default compilation mode.

ANSI Default data type is SIGNED all other modes default is UNSIGNED.
Compilation is case sensitive, all other modes are case insensitive.

CCS2 varl6 = NegConst8 is compiled as: varl6 = NegConst8 & 0xff (no sign

CCs3 extension) . The overload keyword is required.

107

TEST PCD

Purpose:

Examples:

Example
Files:
Also See:

CCSs2 The default #DEVICE ADC is set to the resolution of the part, all other
only modes default to 8.

onebit = eightbits is compiled as onebit = (eightbits != 0)

All other modes compile as: onebit = (eightbits & 1)

Chip Options -Defines the target processor. Every program must have exactly one
#DEVICE with a chip. When linking multiple compilation units, this directive must appear
exactly the same in each compilation unit.

Compilation mode selection - The compilation mode selection allows existing code to
be compiled without encountering errors created by compiler compliance. As CCS
discovers discrepancies in the way expressions are evaluated according to ANSI, the
change will generally be made only to the ANSI mode and the next major CCS release.

Chip Options-

#device DSPIC33FJ64GP306

#device PIC24FJ64GA002 ICD=TRUE

#device ADC=10

#device ICD=TRUE ADC=10

Float Options-

#device $f=.

printf ("$£f", .5); //will print .5, without the directive it will print
0.5

Compilation mode selection-
#device CCS2

None

None

DEVICE

Syntax:
Elements:

Purpose:

Examples:

108

__DEVICE__
None

This pre-processor identifier is defined by the compiler with the base number of the
current device (from a #DEVICE). The base number is usually the number after the C in
the part number. For example the PIC16C622 has a base number of 622.

#if device ==71
SETUP_ADC_PORTS (ALL DIGITAL);
#endif

Example
Files:

Also See:

PRE-PROCESSOR

None

#DEVICE

#ERROR

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

#ERROR text
#ERROR / warning text
#ERROR / information text

text is optional and may be any text

Forces the compiler to generate an error at the location this directive appears in the
file. The text may include macros that will be expanded for the display. This may be
used to see the macro expansion. The command may also be used to alert the user to
an invalid compile time situation.

#if BUFFER ST ZE>16
#error Buffer size is too large

#endif
#error Macro test: min(x,y)

ex_psp.c

#WARNING

#EXPORT (options)

Syntax:

Elements:

#EXPORT (options)

FILE=filname

The filename which will be generated upon compile. If not given, the filname will be the
name of the file you are compiling, with a .0 or .hex extension (depending on output
format).

ONLY=symbol+symbol+.....+symbol
Only the listed symbols will be visible to modules that import or link this relocatable
object file. If neither ONLY or EXCEPT is used, all symbols are exported.

EXCEPT=symbol+symbol+.....+symbol
All symbols except the listed symbols will be visible to modules that import or link this
relocatable object file. If neither ONLY or EXCEPT is used, all symbols are exported.

109

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Purpose:

Examples:

Example
Files:
See Also:

110

RELOCATABLE
CCS relocatable object file format. Must be imported or linked before loading into a PIC.
This is the default format when the #EXPORT is used.

HEX
Intel HEX file format. Ready to be loaded into a PIC. This is the default format when no
#EXPORT is used.

RANGE-=start:stop
Only addresses in this range are included in the hex file.

OFFSET=address
Hex file address starts at this address (0 by default)

ODD
Only odd bytes place in hex file.

EVEN
Only even bytes placed in hex file.

This directive will tell the compiler to either generate a relocatable object file or a stand-
alone HEX binary. A relocatable object file must be linked into your application, while a
stand-alone HEX binary can be programmed directly into the PIC.

The command line compiler and the PCW IDE Project Manager can also be used to
compile/link/build modules and/or projects.

Multiple #EXPORT directives may be used to generate multiple hex files. this may be
used for 8722 like devices with external memory.

#EXPORT (RELOCATABLE, ONLY=TimerTask)
void TimerFuncl (void) { /* some code */ }
void TimerFunc?2 (void) { /* some code */ }
void TimerFunc3 (void) { /* some code */ }
void TimerTask (void)
{
TimerFuncl () ;
TimerFunc?2 () ;
TimerFunc3 () ;
}
/*
This source will be compiled into a relocatable object, but the
object this is being linked to can only see TimerTask()

=/
None

#IMPORT, #MODULE, Invoking the Command Line Compiler, Linker Overview

PRE-PROCESSOR

__FILE__

Syntax:
Elements:

Purpose:

Examples:

Example
Files:
Also See:

__FILE__
None

The pre-processor identifier is replaced at compile time with the file path and the
filename of the file being compiled.

if (index>MAX ENTRIES)
printf ("Too many entries, source file: "

__FILENAME__

Syntax:
Elements:

Purpose:

Examples:

Example
Files:
Also See:

~ FILE " at line " LINE "\r\n");
assert.h
line
__FILENAME___

None

The pre-processor identifier is replaced at compile time with the filename of the file
being compiled.

if (index>MAX ENTRIES)
printf ("Too many entries, source file:
~ FILENAME " at line " LINE "\r\n");

"

None

line

#FILL_ROM

Syntax:
Elements:

Purpose:

#fill_rom value
value is a constant 16-bit value

This directive specifies the data to be used to fill unused ROM locations. When linking
multiple compilation units, this directive must appear exactly the same in each

111

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

compilation unit.

Examples: #£fi11 rom 0x36
Example None

Files:

Also See: #ROM

#FUSES

Syntax: #FUSES options

Elements: options vary depending on the device. A list of all valid options has been put at the top
of each devices .h file in a comment for reference. The PCW device edit utility can
modify a particular devices fuses. The PCW pull down menu VIEW | Valid fuses will
show all fuses with their descriptions.

Some common options are:

LP, XT, HS, RC

WDT, NOWDT

PROTECT, NOPROTECT

PUT, NOPUT (Power Up Timer)
BROWNOUT, NOBROWNOUT

Purpose: This directive defines what fuses should be set in the part when it is programmed. This
directive does not affect the compilation; however, the information is put in the output
files. If the fuses need to be in Parallax format, add a PAR option. SWAP has the special
function of swapping (from the Microchip standard) the high and low BYTES of non-
program data in the Hex file. This is required for some device programmers.

Some fuses are set by the compiler based on other compiler directives. For example,
the oscillator fuses are set up by the #USE delay directive. The debug, No debug and
ICSPN Fuses are set by the #DEVICE ICD=directive.

Some processors allow different levels for certain fuses. To access these levels, assign
a value to the fuse.

When linking multiple compilation units be aware this directive applies to the final object
file. Later files in the import list may reverse settings in previous files.

To eliminate all fuses in the output files use:
#FUSES none

To manually set the fuses in the output files use:
#FUSES 1 = 0xC200 // sets config word 1 to 0xC200

112

PRE-PROCESSOR

Examples: #fuses HS,NOWDT
Example None

Files:

Also See: None

#HEXCOMMENT

Syntax: #HEXCOMMENT text comment for the top of the hex file
#HEXCOMMENT\ text comment for the end of the hex file

Elements: None
Purpose: Puts a comment in the hex file

Some programmers (MPLAB in particular) do not like comments at the top of the hex

file.
Examples: #HEXCOMMENT Version 3.1 — requires 20MHz crystal
Example None
Files:
Also See: None

#1D

Syntax: #ID number 32
#ID number, number, number, number
#ID "filename"
#ID CHECKSUM

Elements: Number 3 2 is a 32 bit number, number is a 8 bit number, filename is any valid PC
filename and checksum is a keyword.

Purpose: This directive defines the ID word to be programmed into the part. This directive does
not affect the compilation but the information is put in the output file.

The first syntax will take a 32 -bit number and put one byte in each of the four ID bytes
in the traditional manner. The second syntax specifies the exact value to be used in

113

TEST PCD

Examples:

Example
Files:

Also See:

#IF expr

Syntax:

Elements:

Purpose:

Examples:

114

each of the four ID bytes .

When a filename is specified the ID is read from the file. The format must be simple text
with a CR/LF at the end. The keyword CHECKSUM indicates the device checksum
should be saved as the ID.

#id 0x12345678

#id 0x12, 0x34, 0x45, 0x67
#id "serial.num"

#id CHECKSUM

ex_cust.c

None

#ELSE #ELIF #ENDIF

#if expr
code

#elif expr //Optional, any number may be used
code

#else //Optional
code

#endif

expr is an expression with constants, standard operators and/or preprocessor
identifiers. Code is any standard c source code.

The pre-processor evaluates the constant expression and if it is non-zero will process
the lines up to the optional #ELSE or the #ENDIF.

Note: you may NOT use C variables in the #IF. Only preprocessor identifiers created via
#define can be used.

The preprocessor expression DEFINED(id) may be used to return 1 if the id is defined
and 0 if it is not.

== and != operators now accept a constant string as both operands. This allows for
compile time comparisons and can be used with GETENV() when it returns a string
result.

#1if MAX VALUE > 255
long value;
#else
int value;
#endif
#if getenv (“DEVICE”)=="PIC16F877"

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Example
Files:
Also See:

PRE-PROCESSOR
//do something special for the PIC16F877
#endif
ex_extee.c

#IFDEF, #IENDEF, getenv()

#IFDEF #IFNDEF #ELSE #ELIF #ENDIF

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

#IFDEF id
code
#ELIF
code
#ELSE
code
#ENDIF

#IFNDEF id
code
#ELIF
code
#ELSE
code
#ENDIF

id is a preprocessor identifier, code is valid C source code.

This directive acts much like the #IF except that the preprocessor simply checks to see
if the specified ID is known to the preprocessor (created with a #DEFINE). #IFDEF
checks to see if defined and #IFNDEF checks to see if it is not defined.

#define debug // Comment line out for no debug

#ifdef DEBUG

printf ("debug point a");

#endif

ex_sqw.c

IE

115

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

#IGNORE_WARNINGS

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

#ignore_warnings ALL
#IGNORE_WARNINGS NONE
#IGNORE_WARNINGS warnings

warnings is one or more warning numbers separated by commas
This function will suppress warning messages from the compiler. ALL indicates no
warning will be generated. NONE indicates all warnings will be generated. If numbers

are listed then those warnings are suppressed.

#ignore warnings 203
while (TRUE) {
#ignore warnings NONE

None

Warning messages

#IMPORT (options)

Syntax:

Elements:

116

#IMPORT (options)

FILE=filname
The filename of the object you want to link with this compilation.

ONLY=symbol+symbol+.....+symbol
Only the listed symbols will imported from the specified relocatable object file. If neither
ONLY or EXCEPT is used, all symbols are imported.

EXCEPT=symbol+symbol+.....+symbol
The listed symbols will not be imported from the specified relocatable object file. If
neither ONLY or EXCEPT is used, all symbols are imported.

RELOCATABLE
CCS relocatable object file format. This is the default format when the #IMPORT is
used.

COFF
COFF file format from MPASM, C18 or C30.

HEX
Imported data is straight hex data.

Purpose:

Examples:

Example
Files:
See Also:

PRE-PROCESSOR

RANGE-=start:stop
Only addresses in this range are read from the hex file.

LOCATION=id
The identifier is made a constant with the start address of the imported data.

SIZE=id
The identifier is made a constant with the size of the imported data.

This directive will tell the compiler to include (link) a relocatable object with this unit
during compilation. Normally all global symbols from the specified file will be linked, but
the EXCEPT and ONLY options can prevent certain symbols from being linked.

The command line compiler and the PCW IDE Project Manager can also be used to
compile/link/build modules and/or projects.

#IMPORT (FILE=timer.o, ONLY=TimerTask)
void main (void)
{

while (TRUE)

TimerTask() ;

}
/*
timer.o is linked with this compilation, but only TimerTask() is
visible in scope from this object.

wy
None

#EXPORT, #MODULE, Invoking the Command Line Compiler, Linker Overview

#INCLUDE

Syntax:

Elements:

Purpose:

#INCLUDE <filename>
or
#INCLUDE "filename"

filename is a valid PC filename. It may include normal drive and path information. A file
with the extension ".encrypted” is a valid PC file. The standard compiler #NCLUDE
directive will accept files with this extension and decrypt them as they are read. This
allows include files to be distributed without releasing the source code.

Text from the specified file is used at this point of the compilation. If a full path is not
specified the compiler will use the list of directories specified for the project to search for
the file. If the filename is in ™ then the directory with the main source file is searched
first. If the filename is in <> then the directory with the main source file is searched last.

117

TEST PCD

Examples: #include <16C54.H>

#include <C:\INCLUDES\COMLIB\MYRS232.C>

Example ex_sqgw.c
Files:
Also See: None

#INLINE

Syntax: #INLINE
Elements: None
Purpose: Tells the compiler that the function immediately following the directive is to be

implemented INLINE. This will cause a duplicate copy of the code to be placed
everywhere the function is called. This is useful to save stack space and to increase
speed. Without this directive the compiler will decide when it is best to make procedures
INLINE.

Examples: #inline
swapbyte (int &a, int &b) {
int t;
t=a;
a=b;
b=t;
}

Example ex_cust.c
Files:
Also See: #SEPARATE

#INT XXXX

Elements: NoCear, LEVEL=n, HIGH, FAST, ALT

Purpose: These directives specify the following function is an interrupt function. Interrupt functions
may not have any parameters. Not all directives may be used with all parts. See the
devices .h file for all valid interrupts for the part or in PCW use the pull down VIEW |
Valid Ints

The MPU will jump to the function when the interrupt is detected. The compiler will

118

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Examples:

Example
Files:

Also See:

PRE-PROCESSOR

generate code to save and restore the machine state, and will clear the interrupt flag. To
prevent the flag from being cleared add NOCLEAR after the #INT_xxxx. The application
program must call ENABLE_INTERRUPTS(INT_xxxx) to initially activate the interrupt.

An interrupt marked FAST uses the shadow feature to save registers. Only one interrupt
may be marked fast. Any registers used in the FAST interrupt beyond the shadow
registers is the responsibility of the user to save and restore.

Level=n specifies the level of the interrupt.

Enable_interrupts specifies the levels that are enabled. The default is level 0 and level 7
is never disabled. High is the same as level = 7.

A summary of the different kinds of dsPIC/PIC24 interrupts:
#INT_Xxxxx
Normal (low priority) interrupt. Compiler saves/restores key registers.
This interrupt will not interrupt any interrupt in progress.
#INT_xxxx FAST
Compiler does a FAST save/restore of key registers.
Only one is allowed in a program.
#INT_xxxx HIGHLevel=3
Interrupt is enabled when levels 3 and below are enabled.
#INT_GLOBAL
Compiler generates no interrupt code. User function is located
at address 8 for user interrupt handling.
#INT_xxxx ALT
Interrupt is placed in Alternate Interrupt Vector instead of Default Interrupt Vector.

#int ad
adc_handler () {

adc_active=FALSE;
}

#int timerl noclear
isr() {

}

None

enable_interrupts(), disable_interrupts(), #INT_DEFAULT,

119

TEST PCD

#INT_DEFAULT

Syntax: #INT_DEFAULT
Elements: None
Purpose: The following function will be called if the ds PIC® triggers an interrupt and a #INT_xxx

hadler has not been defined for the interrupt.

Examples: #int default
default isr() {
printf ("Unexplained interrupt\r\n");

}

Example None
Files:
Also See: #INT _xxxX,

__LINE__

Syntax: __line__

Elements: None

Purpose: The pre-processor identifier is replaced at compile time with line number of the file
being compiled.

Exanuﬂes; if (index>MAX ENTRIES)

printf ("Too many entries, source file: "
__FILE " at line " LINE "\r\n");

Example assert.h

Files:

Also See: file

#LIST

Syntax: #LIST

Elements: None

Purpose: #LIST begins inserting or resumes inserting source lines into the .LST file after a
#NOLIST.

Examples: #NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

Example 16¢74.h

Files:

Also See: #NOLIST

120

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()

PRE-PROCESSOR

#LINE

Syntax: #LINE number file name
Elements: Number is non-negative decimal integer. File name is optional.
Purpose: The C pre-processor informs the C Compiler of the location in your source code. This
code is simply used to change the value of _LINE_ and _FILE_ variables.
Examples: 1. void main () {
#line 10 // specifies the line number that

// should be reported for
// the following line of input

2. #line 7 "hello.c"
// line number in the source file
// hello.c and it sets the
// line 7 as current line
// and hello.c as current file

Example None
Files:
Also See: None

#LOCATE

Syntax: #LOCATE id=x

Elements: id is a C variable,
X is a constant memory address

Purpose: #LOCATE allocates a C variable to a specified address. If the C variable was not
previously defined, it will be defined as an INT8.

A special form of this directive may be used to locate all A functions local variables
starting at a fixed location.
Use: #LOCATE Auto = address

This directive will place the indirected C variable at the requested address.

Examples: // This will locate the float variable at 50-53
// and C will not use this memory for other
// variables automatically located.
float x;
#locate x=0x 800

Example ex_glint.c
Files:
Also See: #BYTE, #BIT, #RESERVE, #WORD

121

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

#MODULE

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

See Also:

#MODULE
None

All global symbols created from the #MODULE to the end of the file will only be visible
within that same block of code (and files #INCLUDE within that block). This may be
used to limit the scope of global variables and functions within include files. This
directive also applies to pre-processor #defines.

Note: The extern and static data qualifiers can also be used to denote scope of variables
and functions as in the standard C methodology. #MODULE does add some benefits in
that pre-processor #DEFINE can be given scope, which cannot normally be done in
standard C methodology.

int GetCount (void) ;
void SetCount (int newCount) ;
#MODULE
int g count;
#define G COUNT MAX 100
int GetCount (void) {return(g_count);}
void SetCount (int newCount) {

if (newCount>G COUNT MAX)

newCount=G COUNT MAX;

g count=newCount;
}
/*
the functions GetCount () and SetCount () have global scope, but the
variable g count and the #define G COUNT MAX only has scope to this
file.
=

None

#EXPORT, Invoking the Command Line Compiler, Linker Overview

#NOLIST

Syntax:
Elements:
Purpose:
Examples:

Example Files:
Also See:

122

#NOLIST
None
Stops inserting source lines into the .LST file (until a #LIST)

#NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

16c74.h
#LIST

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

#OCS

Syntax:
Elements:
Purpose:
Examples:

Example Files:
Also See:

#OPT

Syntax:
Elements:

Purpose:

Examples:
Example

Files:
Also See:

#ORG

Syntax:

PRE-PROCESSOR

#OCS x

x is the clock's speed and can be 1 Hz to 100 MHz.
Used instead of the #use delay(clock = x)
finclude <18F4520.h>

f#device ICD=TRUE

#0CS 20 MHz

#use rs232 (debugger)

void main () {

None
#USE DELAY

#OPT n
All dsPIC30/dsPIC33/PIC24 Devices: n is the optimization level 0-9

The optimization level is set with this directive. This setting applies to the entire program

and may appear anywhere in the file. The default is 9 for full optimization. L evels 10 and
11 are for extended optimization. It may be used to reduce optimization below default if it
is suspected that an optimization is causing a flaw in the code.

#opt 5
None

None

#ORG start, end
or

#ORG segment
or

#ORG start, end {}
or

123

TEST PCD

#ORG start, end auto=0

#ORG start,end DEFAULT
or

#ORG DEFAULT

Elements: start is the first ROM location (word address) to use, end is the last ROM location,
segment is the start ROM location from a previous #ORG

Purpose: This directive will fix the following function or constant declaration into a specific ROM
area. End may be omitted if a segment was previously defined if you only want to add
another function to the segment.

Follow the ORG with a {} to only reserve the area with nothing inserted by the compiler.

The RAM for a ORG'ed function may be reset to low memory so the local variables and
scratch variables are placed in low memory. This should only be used if the ORG'ed
function will not return to the caller. The RAM used will overlap the RAM of the main
program. Add a AUTO=0 at the end of the #ORG line.

If the keyword DEFAULT is used then this address range is used for all functions user
and compiler generated from this point in the file until a #ORG DEFAULT is encountered
(no address range). If a compiler function is called from the generated code while
DEFAULT is in effect the compiler generates a new version of the function within the
specified address range.

When linking multiple compilation units be aware this directive applies to the final object
file. It is an error if any #ORG overlaps between files unless the #ORG matches exactly.

Examples: #ORG 0x1E00, Ox1FFF
MyFunc () {
//This function located at 1E00
}

#ORG 0x1EOQOQ

Anotherfunc () {

// This will be somewhere 1E00-1FO00
}

#ORG 0x800, 0x820 ({}
//Nothing will be at 800-820

#ORG 0x1C00, Ox1COF

CHAR CONST ID[10}= {"123456789"};
//This ID will be at 1CO00

//Note some extra code will
//proceed the 123456789

#0ORG 0x1F00, Ox1FFO
Void loader () {

124

PRE-PROCESSOR

}

Example loader.c
Files:
Also See: #ROM

__PCD_ _

Syntax: __PCD__
Elements: None
Purpose: The PCD compiler defines this pre-processor identifier. It may be used to determine if

the PCD compiler is doing the compilation.

Examples: #ifdef pcd
#device dsPIC33FJ256MC710
#endif

Example ex_sqgw.c

Files:

Also See: None

#PRAGMA

Syntax: #PRAGMA cmd
Elements: cmd is any valid preprocessor directive.
Purpose: This directive is used to maintain compatibility between C compilers. This compiler will

accept this directive before any other pre-processor command. In no case does this
compiler require this directive.

Examples: #pragma device PIC16C54
Example ex_cust.c

Files:

Also See: None

125

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

#RECURSIVE

Syntax: #RECURSIVE

Elements: None

Purpose: Tells the compiler that the procedure immediately following the directive will be
recursive.

Examples: #recursive

int factorial (int num) {
if (num <= 1)
return 1;
return num * factorial (num-1) ;

}

Example None
Files:
Also See: None

#RESERVE

Syntax: #RESERVE address
or
#RESERVE address, address, address
or
#RESERVE start:end

Elements: address is a RAM address, start is the first address and end is the last address

Purpose: This directive allows RAM locations to be reserved from use by the
compiler. #RESERVE must appear after the #DEVICE otherwise it will have no effect.
When linking multiple compilation units be aware this directive applies to the final object
file.

Examples: #DEVICE dsPIC30F2010
#RESERVE ~ 0x800:0x80B3

Example ex_cust.c
Files:
Also See: #ORG

126

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

#ROM

Syntax:

Elements:

Purpose:

Examples:

Example
Files:
Also See:

PRE-PROCESSOR

#ROM address = {list}
#ROM int8 address = {list}
#ROM char address = {list}

address is a ROM word address, list is a list of words separated by commas

Allows the insertion of data into the .HEX file. In particular, this may be used to program
the '84 data EEPROM, as shown in the following example.

Note that if the #ROM address is inside the program memory space, the directive
creates a segment for the data, resulting in an error if a #ORG is over the same area.
The #ROM data will also be counted as used program memory space.

The int8 option indicates each item is 8 bits, the default is 16 bits. The char option treats
each item as 7 bits packing 2 chars into every pcm 14-bit word.

When linking multiple compilation units be aware this directive applies to the final object
file.

Some special forms of this directive may be used for verifying program memory:
#ROM address = checksum

This will put a value at address such that the entire program memory will sum to
0x1248
#ROM address = crcl6

This will put a value at address that is a crc16 of all the program memory except the
specified address
#ROM address = crc8

This will put a value at address that is a crc16 of all the program memory except the
specified address
#rom Ox7FFC00={1,2,3,4,5,6,7,8}

None

#ORG

127

TEST PCD

#SEPARATE

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

128

#SEPARATE options

options is optional, and are:

STDCALL — Use the standard Microchip calling method, used in C30. W0-W?7 is used
for function parameters, rest of the working registers are not touched, remaining function
parameters are pushed onto the stack.

ARG=Wx:Wy — Use the working registers Wx to Wy to hold function parameters. Any
remaining function parameters are pushed onto the stack.

DND=Wx:WYy — Function will not change Wx to Wy working registers.

AVOID=Wx:Wy — Function will not use Wx to Wy working registers for function
parameters.

NO RETURN - Prevents the compiler generated return at the end of a function.
You cannot use STDCALL with the ARG, DND or AVOID parameters.

If you do not specify one of these options, the compiler will determine the best
configuration, and will usually not use the stack for function parameters (usually scratch
space is allocated for parameters).

Tells the compiler that the procedure IMMEDIATELY following the directive is to be
implemented SEPARATELY. This is useful to prevent the compiler from automatically
making a procedure INLINE. This will save ROM space but it does use more stack
space. The compiler will make all procedures marked SEPARATE, separate, as
requested, even if there is not enough stack space to execute.

#separate ARG=WO:W7 AVOID=W8:W15 DND=W8: W15
swapbyte (int *a, int *b) {
int t;
t=*a;
*a=*b;
*b=t;
}

ex_cust.c

#INLINE

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

PRE-PROCESSOR

#SERIALIZE

Syntax:

Elements:

Purpose:

Examples:

#SERIALIZE(id=xxx, next="x" | file="filename.txt" " | listfile="filename.txt",
"prompt="text", log="filename.txt") -

Or-#SERIALIZE(dataee=Xx, binary=x, next="x" | file="filename.txt" |
listfile="filename.txt", prompt="text", log="filename.txt")

id=xxx - Specify a C CONST identifier, may be int8, intl16, int32 or char array

Use in place of id parameter, when storing serial number to EEPROM:

dataee=x - The address x is the start address in the data EEPROM.

binary=x - The integer x is the number of bytes to be written to address specified. -or-
string=x - The integer x is the number of bytes to be written to address specified.

Use only one of the next three options:

file="filename.txt" - The file x is used to read the initial serial number from, and this file
is updated by the ICD programmer. It is assumed this is a one line file with the serial
number. The programmer will increment the serial number.

listfile="filename.txt" - The file x is used to read the initial serial number from, and this
file is updated by the ICD programmer. It is assumed this is a file one serial number per
line. The programmer will read the first line then delete that line from the file.

next="x" - The serial number X is used for the first load, then the hex file is updated to
increment x by one.

Other optional parameters:

prompt="text" - If specified the user will be prompted for a serial number on each load.
If used with one of the above three options then the default value the user may use is
picked according to the above rules.

log=xxx - A file may optionally be specified to keep a log of the date, time, hex file name
and serial number each time the part is programmed. If no id=xxx is specified then this
may be used as a simple log of all loads of the hex file.

Assists in making serial numbers easier to implement when working with CCS ICD units.
Comments are inserted into the hex file that the ICD software interprets.

//Prompt user for serial number to be placed

//at address of serialNumA

//Default serial number = 200int8 const serialNumA=100;

#serialize (id=serialNumA, next="200", prompt="Enter the serial number")

//Adds serial number log in seriallog.txt
#serialize (id=serialNumA, next="200", prompt="Enter the serial number",
log="seriallog.txt")

//Retrieves serial number from serials.txt

129

TEST PCD

Example
Files:

Also See:

#TASK

#serialize (id=serialNumA, listfile="serials.txt")

//Place serial number at EEPROM address 0, reserving 1 byte
#serialize (dataee=0,binary=1,next="45", prompt="Put in Serial number")

//Place string serial number at EEPROM address 0, reserving 2 bytes

#serialize (dataee=0, string=2,next="AB",prompt="Put in Serial
number")

None

None

(The RTOS is only included with the PCW, PCWH, and PCWHD software packages.)

Each RTOS task is specified as a function that has no parameters and no return. The #TASK
directive is needed just before each RTOS task to enable the compiler to tell which functions are
RTOS tasks. An RTOS task cannot be called directly like a regular function can.

Syntax:

Elements:

Purpose:

130

#TASK (options)

options are separated by comma and may be:

rate=time

Where time is a number followed by s, ms, us, or ns. This specifies how often the task
will execute.

max=time
Where time is a number followed by s, ms, us, or ns. This specifies the budgeted time for
this task.

gueue=bytes

Specifies how many bytes to allocate for this task's incoming messages. The default
value is 0.

enabled=value

Specifies whether a task is enabled or disabled by rtos_run().
True for enabled, false for disabled. The default value is enabled.

This directive tells the compiler that the following function is an RTOS task.

The rate option is used to specify how often the task should execute. This must be a
multiple of the minor_cycle option if one is specified in the #USE RTOS directive.

The max option is used to specify how much processor time a task will use in one

Examples:
Also See:

PRE-PROCESSOR

execution of the task. The time specified in max must be equal to or less than the time
specified in the minor_cycle option of the #USE RTOS directive before the project will
compile successfully. The compiler does not have a way to enforce this limit on processor
time, so a programmer must be careful with how much processor time a task uses for
execution. This option does not need to be specified.

The queue option is used to specify the number of bytes to be reserved
for the task to receive messages from other tasks or functions. The default queue value is
0.

#task (rate=1s, max=20ms, queue=5)
#USE RTOS

__TIME __

Syntax:
Elements:
Purpose:

Examples:

Example
Files:
Also See:

#TYPE

Syntax:

Elements:

Purpose:

__TIME__

None

This pre-processor identifier is replaced at compile time with the time of the compile in
the form: "hh:mm:ss"

printf ("Software was compiled on ");
printf(TIME);

None

None

#TYPE standard-type=size

#TYPE default=area

#TYPE unsigned

#TYPE signed

#TYPE char=signed

#TYPE char=unsigned

#TYPE ARG=Wx:Wy

#TYPE DND=Wx:Wy

#TYPE AVOID=Wx:Wy

#TYPE RECURSIVE

#TYPE CLASSIC

standard-type is one of the C keywords short, int, long, float, or double

sizeis 1,8,16, 48, or 64

area is a memory region defined before the #TYPE using the addressmod directive
Wx:Wy is a range of working registers (example: W0, W1, W15, etc)

By default the compiler treats SHORT as 8 bits , INT as 16 bits, and LONG as 32 bits.

131

TEST PCD

Examples:

132

The traditional C convention is to have INT defined as the most efficient size for the
target processor. This is why it is 16 bits on the dsPIC/PIC24 ® . In order to help with
code compatibility a #TYPE directive may be used to allow these types to be changed.
#TYPE can redefine these keywords.

Note that the commas are optional. Be warned CCS example programs and include
files may not work right if you use #TYPE in your program.

Classic will set the type sizes to be compatible with CCS PIC programs.

This directive may also be used to change the default RAM area used for variable
storage. This is done by specifying default=area where area is a addressmod address
space.

When linking multiple compilation units be aware this directive only applies to the current
compilation unit.

The #TYPE directive allows the keywords UNSIGNED and SIGNED to set the default
data type.

The ARG parameter tells the compiler that all functions can use those working registers
to receive parameters. The DND parameters tells the compiler that all functions should
not change those working registers (not use them for scratch space). The AVOID
parameter tells the compiler to not use those working registers for passing variables to
functions. If you are using recursive functions, then it will use the stack for passing
variables when there is not enough working registers to hold variables; if you are not
using recursive functions, the compiler will allocate scratch space for holding variables if
there is not enough working registers. #SEPARATE can be used to set these parameters
on an individual basis.

The RECURSIVE option tells the compiler that ALL functions can be recursive.
#RECURSIVE can also be used to assign this status on an individual basis.

#TYPE SHORT= 1 , INT= 8 , LONG= 16, FLOAT=48

#TYPE default=area

addressmod (user ram block, 0x100, Ox1FF);

#type default=user ram block // all variable declarations
// in this area will be in

// 0x100-0x1FF

ftype default= // restores memory allocation
// back to normal

#TYPE SIGNED

#TYPE RECURSIVE
#TYPE ARG=WO:W7

Example
Files:

Also See:

PRE-PROCESSOR

#TYPE AVOID=W8:W15
#TYPE DND=W8:W15

Qéid main ()
{

int variablel; // variablel can only take values from -128 to 127

}
ex_cust.c

None

#UNDEF

Syntax: #UNDEF id
Elements: id is a pre-processor id defined via #DEFINE
Purpose: The specified pre-processor ID will no longer have meaning to the pre-processor.
Examples: #if MAXSIZE<100
#undef MAXSIZE
#define MAXSIZE 100
#endif
Example Files: None
Also See: #DEFINE

#USE DELAY

Syntax:

Elements:

#USE DELAY (options))

Options may be any of the following separated by commas:

clock=speed speed is a constant 1-100000000 (1 hz to 100 mhz).

This number can contains commas. This number also supports the following
denominations: M, MHZ, K, KHZ. This specifies the clock the CPU runs at. Depending on
the PIC this is 2 or 4 times the instruction rate. This directive is not needed if the following
type=speed is used and there is no frequency multiplication or division.

type=speed type defines what kind of clock you are using, and the following values are
133

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Also See:

valid: oscillator, osc (same as oscillator), crystal, xtal (same as crystal), internal, int (same
as internal) or rc. The compiler will automatically set the oscillator configuration bits based
upon your defined type. If you specified internal, the compiler will also automatically set
the internal oscillator to the defined speed. Configuration fuses are modified when this
option is used. Speed is the input frequency.

restart_wdt will restart the watchdog timer on every delay_us() and delay_ms() use.

AUX: type=speed Some chips have a second oscillator used by specific periphrials and
when this is the case this option sets up that oscillator.

delay ms(), delay us()

#USE DYNAMIC_MEMORY

Syntax:
Elements:

Purpose:

Examples:

Example
Files:
Also See:

#USE DYNAMIC_MEMORY
None

This pre-processor directive instructs the compiler to create the _DYNAMIC_HEAD
object. _DYNAMIC_HEAD is the location where the first free space is allocated.

#USE DYNAMIC MEMORY
void main () {

}
ex_malloc.c

None

#USE FAST_IO

Syntax:
Elements:

Purpose:

134

#USE FAST_IO (port)
portisA,B,C,D, E, F, G, H, Jor ALL

Affects how the compiler will generate code for input and output instructions that

follow. This directive takes effect until another #use xxxx_IO directive is

encountered. The fast method of doing I/O will cause the compiler to perform I/O without
programming of the direction register. The compiler's default operation is the opposite of
this command, the direction I/O will be set/cleared on each I/O operation. The user must
ensure the direction register is set correctly via set_tris_X(). When linking multiple
compilation units be aware this directive only applies to the current compilation unit.

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

PRE-PROCESSOR

Examples: #use fast io(A)

Example ex_cust.c

Files:

Also See: #USE FIXED 10, #USE STANDARD 10, set tris X() , General Purpose 1/0O

#USE FIXED_IO

Syntax: #USE FIXED_IO (port_outputs=pin, pin?)
Elements: port is A-G, pin is one of the pin constants defined in the devices .h file.
Purpose: This directive affects how the compiler will generate code for input and output

instructions that follow. This directive takes effect until another #USE XXX _1O directive is
encountered. The fixed method of doing 1/0 will cause the compiler to generate code to
make an I/O pin either input or output every time it is used. The pins are programmed
according to the information in this directive (not the operations actually

performed). This saves a byte of RAM used in standard 1/0. When linking multiple
compilation units be aware this directive only applies to the current compilation unit.

Examples: #use fixed io(a outputs=PIN A2, PIN A3)
Example None
Files:

Also See: #USE FAST 10, #USE STANDARD 10, General Purpose I/O

#USE 12C

Syntax: #USE 12C (options)

Elements: Options are separated by commas and may be:
MASTER Sets to the master mode
MULTI_MASTER Set the multi_master mode
SLAVE Set the slave mode
SCL=pin Specifies the SCL pin (pin is a bit address)
SDA=pin Specifies the SDA pin
ADDRESS=nn Specifies the slave mode address
FAST Use the fast I2C specification.
FAST=nnnnnn Sets the speed to nnnnnn hz
SLOW Use the slow I2C specification

RESTART _WDT Restart the WDT while waiting in 12C_READ

135

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

FORCE_HW Use hardware 12C functions.

FORCE_SW Use software 12C functions.

NOFLOAT_HIGH Does not allow signals to float high, signals are driven from low
to high

SMBUS Bus used is not 12C bus, but very similar

STREAM=id Associates a stream identifier with this 12C port. The identifier
may then be used in functions like i2c_read or i2c_write.

NO_STRETCH Do not allow clock streaching

MASK=nn Set an address mask for parts that support it

12C1 Instead of SCL= and SDA= this sets the pins to the first
module

12C2 Instead of SCL= and SDA= this sets the pins to the second
module

Only some chips allow the following:

DATA_HOLD No ACK is sent until I2C_READ is called for data bytes (slave
only)
ADDRESS_HOLD No ACK is sent until I2C_read is called for the address byte
(slave only)
SDA_HOLD Min of 300ns holdtime on SDA a from SCL goes low
Purpose: CCS offers support for the hardware-based 12C™ and a software-based master [2C™

device.(For more information on the hardware-based 12C module, please consult the
datasheet for your target device; not all PICs support 12C™.

The 12C library contains functions to implement an 12C bus. The #USE I2C remains in
effect for the 12C_START, I2C_STOP, 12C_READ, 12C_WRITE and 12C_POLL functions
until another USE 12C is encountered. Software functions are generated unless the
FORCE_HW is specified. The SLAVE mode should only be used with the built-in SSP.
The functions created with this directive are exported when using multiple compilation
units. To access the correct function use the stream identifier.

Examples: #use I2C(master, sda=PIN_BO, scl=PIN_B1l)

#use I2C(slave,sda=PIN C4,scl=PIN C3
address=0xa0, FORCE HW)

#use I2C (master, scl=PIN BO, sda=PIN Bl, fast=450000)
//sets the target speed to 450 KBSP

Example ex_extee.c with 16¢74.h
Files:
Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state,

i2c_write, i2c_read, 12C Overview

136

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink3.click()

#USE RS232

PRE-PROCESSOR

Syntax: #USE RS232 (options)
Elements: Options are separated by commas and may be:

STREAM=id Associates a stream identifier with this RS232 port. The
identifier may then be used in functions like fputc.

BAUD=x Set baud rate to x
NOINIT option:
Use baud=0 to not init the UART and pins C6 and C7 can
still be used for input-output functions.
#USE RS232(baud=0,0ptions)
To make printf work with NOINIT option, use:
setup_uart(9600);

XMIT=pin Set transmit pin

RCV=pin Set receive pin

FORCE_SW Will generate software serial I/O routines even when the
UART pins are specified.

BRGH10K Allow bad baud rates on chips that have baud rate
problems.

ENABLE=pin The specified pin will be high during transmit. This may
be used to enable 485 transmit.

DEBUGGER Indicates this stream is used to send/receive data though

RESTART_WDT

INVERT

PARITY=X

a CCS ICD unit. The default pin used in B3, use XMIT=
and RCV= to change the pin used. Both should be the
same pin.

Will cause GETC() to clear the WDT as it waits for a
character.

Invert the polarity of the serial pins (normally not needed
when level converter, such as the MAX232). May not be
used with the internal UART.

Where xis N, E, or O.
137

TEST PCD

138

BITS =X

FLOAT_HIGH

ERRORS

SAMPLE_EARLY

RETURN=pin

MULTI_MASTER

LONG_DATA

DISABLE_INTS

STOP=X

TIMEOUT=X

SYNC_SLAVE

Where x is 5-9 (5-7 may not be used with the SCI).

The line is not driven high. This is used for open collector
outputs. Bit 6 in RS232_ERRORS is set if the pin is not
high at the end of the bit time.

Used to cause the compiler to keep receive errors in the
variable RS232_ERRORS and to reset errors when they
occur.

A getc() normally samples data in the middle of a bit time.
This option causes the sample to be at the start of a bit
time. May not be used with the UART.

For FLOAT_HIGH and MULTI_MASTER this is the pin
used to read the signal back. The default for
FLOAT_HIGH is the XMIT pin and for MULTI_MASTER
the RCV pin.

Uses the RETURN pin to determine if another master on
the bus is transmitting at the same time. If a collision is
detected bit 6 is set in RS232_ERRORS and all future
PUTC's are ignored until bit 6 is cleared. The signal is
checked at the start and end of a bit time. May not be
used with the UART.

Makes getc() return an int1l6 and putc accept an intl6.
This is for 9 bit data formats.

Will cause interrupts to be disabled when the routines get
or put a character. This prevents character distortion for
software implemented I/O and prevents interaction
between I/O in interrupt handlers and the main program
when using the UART.

To set the number of stop bits (default is 1). This works
for both UART and
non-UART ports.

To set the time getc() waits for a byte in milliseconds. If
no character comes in within this time the
RS232_ERRORS is set to 0 as well as the return value
form getc(). This works for both UART and non-UART
ports.

Makes the RS232 line a synchronous slave, making the

Purpose:

PRE-PROCESSOR

receive pin a clock in, and the data pin the data in/out.

SYNC_MASTER Makes the RS232 line a synchronous master, making the
receive pin a clock out, and the data pin the data in/out.

SYNC_MATER_CONT Makes the RS232 line a synchronous master mode in
continuous receive mode. The receive pin is set as a
clock out, and the data pin is set as the data in/out.

UART1 Sets the XMIT= and RCV= to the chips first hardware
UART.

UART1A Uses alternate UART pins

UART2 Sets the XMIT= and RCV= to the chips second hardware
UART.

UART2A Uses alternate UART pins

NOINIT No initialization of the UART peripheral is performed.

Useful for dynamic control of the UART baudrate or
initializing the peripheral manually at a later point in the
program's run time. If this option is used, then
setup_uart() needs to be used to initialize the peripheral.
Using a serial routine (such as getc() or putc()) before
the UART is initialized will cause undefined behavior.

This directive tells the compiler the baud rate and pins used for serial /0. This directive
takes effect until another RS232 directive is encountered. The #USE DELAY directive
must appear before this directive can be used. This directive enables use of built-in
functions such as GETC, PUTC, and PRINTF. The functions created with this directive
are exported when using multiple compilation units. To access the correct function use
the stream identifier.

When using parts with built-in UART and the UART pins are specified, the SCI will be
used. If a baud rate cannot be achieved within 3% of the desired value using the current
clock rate, an error will be generated. The definition of the RS232_ERRORS is as
follows:

No UART:
e Bit 7 is 9th bit for 9 bit data mode (get and put).
e Bit 6 set to one indicates a put failed in float high mode.

With a UART:

e Used only by get:

e Copy of RCSTA register except:

e Bit 0 is used to indicate a parity error.

139

TEST PCD

Examples:

Example
Files:

Also See:

Warning:

The PIC UART will shut down on overflow (3 characters received by the hardware with a
GETC() call). The "ERRORS" option prevents the shutdown by detecting the condition
and resetting the UART.

#use rs232 (baud=9600, xmit=PIN A2, rcv=PIN A3)

ex_cust.c

getc(), putc(), printf(), setup uart(), RS2332 |/O overview

#USE RTOS

(The RTOS is only included with the PCW and PCWH packages.)

The CCS Real Time Operating System (RTOS) allows a PIC micro controller to run regularly
scheduled tasks without the need for interrupts. This is accomplished by a function (RTOS_RUN())
that acts as a dispatcher. When a task is scheduled to run, the dispatch function gives control of
the processor to that task. When the task is done executing or does not need the processor
anymore, control of the processor is returned to the dispatch function which then will give control of
the processor to the next task that is scheduled to execute at the appropriate time. This process is
called cooperative multi-tasking.

Syntax:

Elements:

Purpose:

140

#USE RTOS (options)

options are separated by comma and may be:

timer=X Where x is 0-4 specifying the timer used by the
RTOS.
minor_cycle=time Where time is a number followed by s, ms, us, ns.

This is the longest time any task will run. Each task's

execution rate must be a multiple of this time. The

compiler can calculate this if it is not specified.
statistics Maintain min, max, and total time used by each task.

This directive tells the compiler which timer on the PIC to use for monitoring and when to
grant control to a task. Changes to the specified timer's prescaler will effect the rate at
which tasks are executed.

This directive can also be used to specify the longest time that a task will ever take to
execute with the minor_cycle option. This simply forces all task execution rates to be a
multiple of the minor_cycle before the project will compile successfully. If the this option is
not specified the compiler will use a minor_cycle value that is the smallest possible factor
of the execution rates of the RTOS tasks.

If the statistics option is specified then the compiler will keep track of the minimum
processor time taken by one execution of each task, the maximum processor time taken

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

PRE-PROCESSOR

by one execution of each task, and the total processor time used by each task.

When linking multiple compilation units, this directive must appear exactly the same in
each compilation unit.

Examples: #use rtos(timer=0, minor cycle=20ms)

Also See: #TASK

#USE SP|
Syntax: #USE SPI (options)
Elements: Options are separated by commas and may be:
MASTER Set the device as the master. (default)
SLAVE Set the device as the slave.
BAUD=n Target bits per second, default is as fast as possible.
CLOCK_HIGH=n High time of clock in us (not needed if BAUD= is used).
(default=0)
CLOCK_LOW=n Low time of clock in us (not needed if BAUD= is used).
(default=0)
Dl=pin Optional pin for incoming data.
DO=pin Optional pin for outgoing data.
CLK=pin Clock pin.
MODE=n The mode to put the SPI bus.
ENABLE=pin Optional pin to be active during data transfer.
LOAD=pin Optional pin to be pulsed active after data is
transferred.
DIAGNOSTIC=pin Optional pin to the set high when data is sampled.
SAMPLE_RISE Sample on rising edge.
SAMPLE_FALL Sample on falling edge (default).
BITS=n Max number of bits in a transfer. (default=32)
SAMPLE_COUNT=n Number of samples to take (uses majority vote).
(default=1
LOAD_ACTIVE=n Active state for LOAD pin (0, 1).
ENABLE_ACTIVE=n Active state for ENABLE pin (0, 1). (default=0)
IDLE=n Inactive state for CLK pin (0, 1). (default=0)
ENABLE_DELAY=n Time in us to delay after ENABLE is activated.
(default=0)
DATA_HOLD=n Time between data change and clock change
LSB_FIRST LSB is sent first.

141

TEST PCD

Purpose:

Examples:

Example
Files:
Also See:

MSB_FIRST MSB is sent first. (default)

STREAM=id Specify a stream name for this protocol.
SPI1 Use the hardware pins for SPI Port 1
SPI2 Use the hardware pins for SPI Port 2
FORCE_HW Use the pic hardware SPI.

The SPI library contains functions to implement an SPI bus. After setting all of the proper
parameters in #USE SPI, the spi_xfer() function can be used to both transfer and receive
data on the SPI bus.

The SPI1 and SPI2 options will use the SPI hardware onboard the PIC. The most
common pins present on hardware SPI are: DI, DO, and CLK. These pins don’t need to
be assigned values through the options; the compiler will automatically assign hardware-
specific values to these pins. Consult your PIC’s data sheet as to where the pins for
hardware SPI are. If hardware SPI is not used, then software SPI will be used. Software
SPI is much slower than hardware SPI, but software SPI can use any pins to transfer
and receive data other than just the pins tied to the PIC’s hardware SPI pins.

The MODE option is more or less a quick way to specify how the stream is going to
sample data. MODE=0 sets IDLE=0 and SAMPLE_RISE. MODE=1 sets IDLE=0 and
SAMPLE_FALL. MODE=2 sets IDLE=1 and SAMPLE_FALL. MODE=3 sets IDLE=1 and
SAMPLE_RISE. There are only these 4 MODEs.

SPI cannot use the same pins for DI and DO. If needed, specify two streams: one to
send data and another to receive data.

The pins must be specified with DI, DO, CLK or SPIx, all other options are defaulted as
indicated above.

#use spi (DI=PIN B1, DO=PIN BO, CLK=PIN B2, ENABLE=PIN B4, BITS=16)
// uses software SPI

#use spi (FORCE _HW, BITS=16, stream=SPI STREAM)
// uses hardware SPI and gives this stream the name SPI STREAM

None

spi_xfer()

#USE STANDARD_I10O

Syntax:
Elements:

Purpose:
142

#USE STANDARD_IO (port)
portis A, B, C, D, E, F, G, H, J or ALL

This directive affects how the compiler will generate code for input and output

Examples:

Example
Files:

Also See:

PRE-PROCESSOR

instructions that follow. This directive takes effect until another #USE XXX_IO directive is
encountered. The standard method of doing 1/0O will cause the compiler to generate code
to make an 1/O pin either input or output every time it is used. On the 5X processors this
requires one byte of RAM for every port set to standard 1/0.

Standard_io is the default I/O method for all ports.

When linking multiple compilation units be aware this directive only applies to the current
compilation unit.

#use standard io (A)

ex_cust.c

#USE FAST 10, #USE FIXED 10, General Purpose 1/O

#USE TIMER

Syntax:
Elements:

Purpose:

#USE TIMER (options)

TIMER=x

Sets the timer to use as the tick timer. x is a valid timer that the PIC has. Default value
is 1 for Timer 1.

TICK=xx

Sets the desired time for 1 tick. xx can be used with ns(hanoseconds), us
(microseconds), ms (milliseconds), or s (seconds). If the desired tick time can't be
achieved it will set the time to closest achievable time and will generate a warning
specifying the exact tick time. The default value is 1us.

BITS=x

Sets the variable size used by the get_ticks() and set_ticks() functions for returning and
setting the tick time. x can be 8 for 8 bits, 16 for 16 bits, 32 for 32bits or 64 for 64 bits.
The default is 32 for 32 bits.

ISR
Uses the timer's interrupt to increment the upper bits of the tick timer. This mode
requires the the global interrupt be enabled in the main program.

NOISR

The get_ticks() function increments the upper bits of the tick timer. This requires that the
get_ticks() function be called more often then the timer's overflow rate. NOISR is the
default mode of operation.

This directive creates a tick timer using one of the PIC's timers. The tick timer is
initialized to zero at program start. This directive also creates the define
TICKS_PER_SECOND as a floating point number, which specifies that number of ticks
that will occur in one second.

143

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()

TEST PCD

Examples:

Example
Files:
Also See:

#USE TIMER (TIMER=1, TICK=1lms,BITS=16,NOISR)

unsigned intl6 tick difference (unsigned intl6 current, unsigned intlé6
previous) {
return (current - previous);

}

void main (void) {
unsigned intl6 current tick, previous tick;
current tick = previous tick = get ticks();
while (TRUE) {
current tick = get ticks();
if (tick difference(current tick, previous tick) > 1000) {
output toggle (PIN BO) ;
previous tick = current tick;

}

None

get_ticks(), set_ticks()

#USE TOUCHPAD

Syntax:
Elements:

Purpose:

144

#USE TOUCHPAD (options)

RANGE=x

Sets the oscillator charge/discharge current range. If x is L, current is nominally 0.1
microamps. If x is M, current is nominally 1.2 microamps. If x is H, current is nominally 18
microamps. Default value is H (18 microamps).

THRESHOLD=x
X is a number between 1-100 and represents the percent reduction in the nominal
frequency that will generate a valid key press in software. Default value is 6%.

SCANTIME=xxMS

xx is the number of milliseconds used by the microprocessor to scan for one key press. If
utilizing multiple touch pads, each pad will use xx milliseconds to scan for one key press.
Default is 32ms.

PIN=char
If a valid key press is determined on “PIN”, the software will return the character “char” in
the function touchpad_getc(). (Example: PIN_BO="A’)

This directive will tell the compiler to initialize and activate the Capacitive Sensing
Module (CSM) on the microcontroller. The compiler requires use of the TIMERO and
TIMER1 modules, and global interrupts must still be activated in the main program in

PRE-PROCESSOR

order for the CSM to begin normal operation. For most applications, a higher RANGE,
lower THRESHOLD, and higher SCANTIME will result better key press detection.
Multiple PIN's may be declared in “options”, but they must be valid pins used by the
CSM. The user may also generate a TIMERO ISR with TIMERO's interrupt occuring
every SCANTIME milliseconds. In this case, the CSM's ISR will be executed first.

Exanuﬂes: #USE TOUCHPAD (THRESHOLD=5, PIN D5='5"', PIN BO='C')
void main (void) {
char c;

enable interrupts (GLOBAL) ;

while (1) {
c = TOUCHPAD GETC(); //will wait until a pin is detected
} //if PIN BO is pressed, c will have 'C'
} //if PIN D5 is pressed, c will have '5'
Example None
Files:
Also See: touchpad_state(), touchpad_getc(), touchpad _hit()

#WARNING

Syntax: #WARNING text
Elements: text is optional and may be any text
Purpose: Forces the compiler to generate a warning at the location this directive appears in the

file. The text may include macros that will be expanded for the display. This may be
used to see the macro expansion. The command may also be used to alert the user to
an invalid compile time situation.

Examples: #if BUFFER SIZE < 32
#warning Buffer Overflow may occur
#endif

Example ex_psp.c

Files:

Also See: #ERROR

#WORD

Syntax: #WORD id = x
Elements: id is a valid C identifier,

x is a C variable or a constant
Purpose: If the id is already known as a C variable then this will locate the variable at address

145

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

X. In this case the variable type does not change from the original definition. If the id is
not known a new C variable is created and placed at address x with the type int16

Warning: In both cases memory at x is not exclusive to this variable. Other variables
may be located at the same location. In fact when x is a variable, then id and x share
the same memory location.

Examples: #word data = 0x0860

struct {
short C;
short 7;
short OV;
short Ny
short RA;
short IPLO;
short IPL1;
short IPL2;
int upperByte : 8;
} status register;

#word status register = 0x42
éﬁért zero = status register.Z;
Example None
Files:
Also See: #BIT, #BYTE, #LOCATE, #RESERVE

#/ERO_RAM

Syntax: #ZERO_RAM

Elements: None

Purpose: This directive zero's out all of the internal registers that may be used to hold variables
before program execution begins.

Examples: #zero_ram
void main () {
}

Example ex_cust.c

Files:

Also See: None

146

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

BUILT-IN FUNCTIONS DIRECTORY

ot
L

BUILT-IN-FUNCTIONS

The CCS compiler provides a lot of built-in functions to access and use the pic microcontroller's
peripherals. This makes it very easy for the users to configure and use the peripherals without
going into in depth details of the registers associated with the functionality. The functions
categorized by the peripherals associated with them are listed on the next page. Click on the
function name to get a complete description and parameter and return value descriptions.

C Compiler

assert() getch() putc()
fgetc() getchar() putchar()
fgets() gets() puts()

RS232 1/O fprintf() kbhit() setup_uart()
fputc() perror() set_uart_speed()
fputs() printf() getc()
setup_spi() spi_data_is_i spi_read() spi_write()

n()

SPI TWO : ; . : S
setup_spi2() spi_data_is_i spi_read2() spi_write2()

WIRE I/O n2()
spi_xfer()
get_tris_x() input_x() output_float() output_low()
input() output_x() output_high() output_toggle

()

::/)(IDSCRETE input_state() output_bit() output_drive(set_pullup()

)
set_tris_x() input_change
_X()
i2c_isr_state() i2c_slaveaddr() i2c_write()
i2c_poll() i2c_start() i2c_stop()
12C /0 i2c_read() i2c_speed()

147

TEST PCD

clear_interrupt() goto_address() setup_oscillator()

PROCESSO disable_interrupts() interrupt_active() sleep()

R enable_interrupts() label_address()

CONTROLS ext_int_edge() reset_cpu()
getenv() restart_cause()
bit_clear() bit_last() _mul() shift_right()

BIT/BYTE bit_set() make8() rotate_left() swap()

MANIPULA bit_test() makel6() rotate_right()

TION bit_first() make32() shift_left()
abs() atoi32() floor() modf()
acos() atoi48() fmod() pow()
asin() ceil() frexp() pwr()
atan() cos() labs() sin()

STANDARD atan2() cosh() Idexp() sinh()

C MATH atoe() div() Idiv() sqrt()
atof48() exp() log() tan()
atof64() fabs() log10() tanh()

VOLTAGE setup_low_volt_det setup_vref() setup_comparator()

REF/ ect()

COMPARE
adc_done() set_adc_channel() read_adc()

A/D adc_done2() set_adc_channel2(read_adc2()

CONVERSI

ON setup_adc() setup_adc_ports()
setup_adc2() setup_adc_ports2()

148

Standard C Include Files

atof() islower(char) stremp() strrchr()
atoi() isprint(x) strcoll() strspn()
atol() ispunct(x) strepy() strstr()
isalnum() isspace(char) strespn() strtod()
isalpha(char) isupper(char) strlen() strtok()

STANDARD isamong() isxdigit(char) striwr() strtol()

C CHAR / iscntrl(x) itoa() strncat() strtoul()

STRING isdigit(char) sprintf() strncmp() strxfrm(')
isgraph(x) strcat() strncpy() tolower()
strerror() strpbrk() stricmp() toupper()
strchr() strcopy() strtof() strtof48()

TIMERS

get_timerx()
get_timerxy()
restart_wdt()

set_timerx()
set_timerxy()
setup_timerx ()

setup_wdt ()
get_ticks()
set_ticks()

calloc() memcmp() offsetofhit()
free() memcpy() realloc()
STANDARD longjmp() memmove() setjimp()
C MEMORY malloc() memset()
memchr() offsetof()

CAPTURE/
COMPARE/
PWM

set_pwm_duty()
set_motor_unit()
setup_motor_pwm(

)

setup_capture()

set_compare_time()
setup_compare()

get_motor_pwm_co
unt()
set_motor_pwm_dut

y()

setup_power_pwm(

setup_power_pwm
_bins()
get_capture()

set_motor_pwm_ev
ent()

149

TEST PCD

NON-
VOLATILE
MEMORY

erase_program_memory()
read_eeprom()
read_configuration_memory()
read_rom_memory()

read_program_memory()
write_configuration_memory()
write_eeprom()
write_program_memory()

STANDARD bsearch() gsort() srand() va_end()
C SPECIAL nargs() rand() va_arg() va_start()
delay_cycles() delay_ms() delay_us()

DELAYS

rtos_await() rtos_msg_send() rtos_terminate()

150

rtos_disable()
rtos_enable()
rtos_msg_poll()
rtos_msg_read()

TBD

dma_status()

gei_get_count()
setup_gei()

dci_data_received()

dci_transmit_ready()

rtos_overrun()
rtos_run()
rtos_signal()
rtos_stats()

dma_start()

gei_set_count()

dci_read()
dci_write()

rtos_wait()
rtos_yield()

setup_dma()

gei_status()

dci_start()
setup_dci()

Standard C Include Files

rtc_alarm_read() rtc_alarm_write() setup_rtc_alarm(')
rtc_read() rtc_write() setup_rtc()
crc_calc(mode) crc_init(mode) setup_crc(mode)
crc_calc8()
dac_write() setup_dac() setup_high_speed_a
D/A de()
g('\)lNVERSI setup_high_speed_a high_speed_adc_don read_high_speed_ad
dc_pair() e() c()
CAPACITIVE touchpad_getc() touchpad_hit() touchpad_state()
TOUCH PAD
EXTENDED write_extended_ram() read_extended_ram()
pmp_address(address) pmp_input_full() pmp_output_full()
pmp_overflow() pmp_read() pmp_write()
PARALLEL psp_input_full() psp_output_full() psp_overflow()
psp_read() psp_write()
setup_pmp(option, setup_psp(option,
address_mask) address_mask)
abs()
Syntax: value = abs(x)
Parameters: x is any integer or float type.
Returns: Same type as the parameter.
Function: Computes the absolute value of a number.
Availability: All devices

151

TEST PCD

Requires:

Examples:

Example Files:

Also See:

#INCLUDE <stdlib.h>

signed int target,actual;

error = abs(target-actual);

None

labs()

adc_done() adc_done2()

Syntax:

Parameters:

Returns:

Function:
Availability:

Requires:
Examples:

Example
Files:

Also See:

152

value = adc_done();
value = adc_done2();

None

A short int. TRUE if the A/D converter is done with
conversion, FALSE if it is still busy.

Can be polled to determine if the A/D has valid data.

Only available on devices with built in analog to
digital converters

None

intl6é value;

setup_adc ports (sANO|sAN1l, VSS VDD);
setup adc (ADC_CLOCK DIV 4 |ADC TAD MUL 8);
set _adc channel (0);

read_adc (ADC_START_ ONLY) ;

intl done = adc done();
while (!done) {
done = adc_done();
}
value = read adc();
printf (“A/C value = %LX\n\r”, value);
}

None

setup_adc(), set_adc_channel(), setup_adc_ports(),

read adc(), ADC Overview

assert()

Syntax:
Parameters:

Returns:

Function:

Auvailability:
Requires:

Examples:

Example
Files:

Also See:

atoe()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:

Standard C Include Files

assert (condition);
condition is any relational expression

Nothing

This function tests the condition and if FALSE will
generate an error message on STDERR (by default
the first USE RS232 in the program). The error
message will include the file and line of the

assert(). No code is generated for the assert() if you
#define NODEBUG. In this way you may include
asserts in your code for testing and quickly eliminate
them from the final program.

All devices
assert.h and #USE RS232

assert (number of entries<TABLE SIZE);
// If number of entries is >= TABLE SIZE then

// the following is output at the RS232:
// Assertion failed, file myfile.c, line 56

None

#USE RS232, RS232 1/O Overview

write_program_memory(address, dataptr, count);
string is a pointer to a null terminated string of
characters.

Result is a floating point number

Converts the string passed to the function into a
floating point representation. If the result cannot be

represented, the behavior is undefined. This function
also handles E format numbers .

All devices
#INCLUDE <stdlib.h>

153

TEST PCD

Examples:

Example
Files:
Also See:

char string [10];
float32 x;

strcpy (string, "12E3");

X = atoe(string);
// % is now 12000.00

None

atoi(), atol(), atoi32(), atof(), printf()

atof() atof48() atof64()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

154

result = atof (string)

or

result = atof48(string)

or

result=atof64(string)

string is a pointer to a null terminated string of
characters.

Result is a floating point number in single, extended
or double precision format

Converts the string passed to the function into a
floating point representation. If the result cannot be
represented, the behavior is undefined.

All devices
#INCLUDE <stdlib.h>

char string [10];
float x;

strcpy (string, "123.456");
x = atof (string);
// x 1is now 123.456

ex_tank.c

atoi(), atol(), atoi32(), printf()

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

atoi() atol() atoi32()
atoi48() atoi64()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

bit_clear()

Syntax:
Parameters:

Returns:
Function:

ivalue = atoi(string)
or
Ivalue = atol(string)
or
i32value = atoi32(string)
or
i48value=atoi48(string)
or
i64value=atoi64(string)
string is a pointer to a null terminated string of
characters.
ivalue is an 8 bit int.
Ivalue is a 16 bit int.
i32value is a 32 bit int.
48value is a 48 bit int.
i64value is a 64 bit int.
Converts the string passed to the function into an int
representation. Accepts both decimal and
hexadecimal argument. If the result cannot be
represented, the behavior is undefined.

All devices
#INCLUDE <stdlib.h>
char string[10];
int x;

strcpy(string, "123");

x = atoi (string);
// x is now 123
input.c

printf()

bit_clear(var, bit)

var may be a any bit variable (any Ivalue)

bit is a number 0- 63 representing a bit number, 0 is
the least significant bit.

undefined

Simply clears the specified bit in the given

155

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

variable. The least significant bit is 0. This function is
the similar to: var &= ~(1<<bit);

Availability: All devices

Requires: Nothing

Examples: int x;
x=5;

bit clear(x,2);
// x is now 1

Example ex_patg.c
Files:
Also See: bit_set(), bit_test()

bit_first()

Syntax: N = bit_first (value, var)
Parameters: value is a 0 to 1 to be shifted in
var is a 16 bit integer.
Returns: An 8 bit integer
Function: This function sets N to the 0 based position of the

first occurrence of value. The search starts from the
right or least significant bit.

Availability: 30F/33F/24-bit devices
Requires: Nothing
Examples: Intl6 var = 0x0033;
Int8 N = 0;
// N =2

N = bit first (0, var);

Example None
Files:
Also See: shift_right(), shift_left(), rotate_right(), rotate_left()
bit_last()
Syntax: N = bit_last (value, var)
N = bit_last(var)
Parameters: value is a 0 to 1 to search for
var is a 16 bit integer.
Returns: An 8-bit integer
Function: The first function will find the first occurrence of

value in the var starting with the most significant

156

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

bit.

The second function will note the most significant
bit of var and then search for the first different bit.
Both functions return a 0 based result.

Availability: 30F/33F/24-bit devices
Requires: Nothing
Examples: //Bit pattern

//11101110 11111111
Intl6 var = OxXEEFF;
Int8 N = 0;

//N is assigned 12

N = bit last (0, var);
//N is assigned 12

N = bit last (var);

Example None

Files:

Also See: shift_right(), shift_left(), rotate_right(), rotate left()
bit_set()

Syntax: bit_set(var, bit)

Parameters: var may be any variable (any Ivalue)

bit is a number 0- 63 representing a bit number, 0 is the least
significant bit.

Returns: Undefined
Function: Sets the specified bit in the given variable. The least significant
bit is 0. This function is the similar to: var |= (1<<bit);
Availability: All devices
Requires: Nothing
Examples: int x;
x=5;

bit set(x,3);
// x is now 13

Example ex_patg.c
Files:
Also See: bit_clear(), bit_test()

157

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

bit_test()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

bsearch()

Syntax:
Parameters:
Returns:

Function:
158

value = bit_test (var, bit)

var may be a any bit variable (any Ivalue)

bit is a number 0- 63 representing a bit number, O is the least
significant bit.

Oorl

Tests the specified bit in the given variable. The least significant
bit is 0. This function is much more efficient than, but otherwise
similar to:

((var & (1<<bit)) I=0)

All devices
Nothing

if(bit test(x,3) || !bit test (x,1)){
//either bit 3 is 1 or bit 1 is 0
}

if (data!=0)

for (i=31;!bit test(data, 1i);i--)
// 1 now has the most significant bit in data
// that is set to a 1

€ex_patg.c

bit_clear(), bit_set()

ip = bsearch
(&key, base, num, width, compare)

key: Object to search for
base: Pointer to array of search data
num: Number of elements in search data

width: Width of elements in search data

compare: Function that compares two elements in search data
bsearch returns a pointer to an occurrence of key in the array
pointed to by base. If key is not found, the function returns NULL.
If the array is not in order or contains duplicate records with
identical keys, the result is unpredictable.

Performs a binary search of a sorted array

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Availability:
Requires:
Examples:

Example
Files:

Also See:

calloc()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

Standard C Include Files

All devices

#INCLUDE <stdlib.h>

int nums[5]={1,2,3,4,5};

int compar (const void *argl,const void *arg2);

void main () {

int *ip, key;

key = 3;

ip = bsearch(&key, nums, 5, sizeof(int),
compar) ;

}

int compar (const void *argl,const void *arg2) {

if (* (int *) argl < (* (int *) arg2) return -
1

else if (* (int *) argl == (* (int *) arg2)

return 0
else return 1;

}

None

gsort()

ptr=calloc(nmem, size)

nmem is an integer representing the number of member objects,
and size is the number of bytes to be allocated for each one of
them.

A pointer to the allocated memory, if any. Returns null otherwise.
The calloc function allocates space for an array of nmem objects

whose size is specified by size. The space is initialized to all bits
zero.

All devices

#INCLUDE <stdlibm.h>

int * iptr;

iptr=calloc(5,10);

// iptr will point to a block of memory of

// 50 bytes all initialized to O.

None

realloc(), free(), malloc()

159

TEST PCD

ceil()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

result = ceil (value)
value is any float type
A float with precision equal to value

Computes the smallest integer value greater than the
argument. CEIL(12.67) is 13.00.

All devices
#INCLUDE<math.h>

// Calculate cost based on weight rounded
// up to the next pound

cost = ceil(weight) * DollarsPerPound;
None

floor

clear_interrupt()

Syntax:
Parameters:
Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

160

clear_interrupt(level)
level - a constant defined in the devices.h file
undefined

Clears the interrupt flag for the given level. This function is
designed for use with a specific interrupt, thus eliminating the
GLOBAL level as a possible parameter. Some chips that have
interrupt on change for individual pins allow the pin to be specified
like INT_RAL.

All devices

Nothing

clear interrupt (int timerl);
None

enable interrupts , #INT , Interrupts Overview

Standard C Include Files

crc_calc() crc_calc8()
crc_calcl6() crc_calc32()

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

Result = crc_calc (data,[width]);
Result = crc_calc(ptr,len,[width]);
Result = crc_calc8(data,[width]);
Result = crc_calc8(ptr,len,[width]);

Result = crc_calcl6(data,[width]); /lsame as
crc_calc()
Result = crc_calc16(ptr,len,[width]); /lsame as
crc_calc()

Result = crc_calc32(data,[width]);
Result = crc_calc32(ptr,len,[width]);

data- This is one double word, word or byte that needs to be

processed when the crc_calc32(), crc_calcl16(), or crc_calc8() is

used.

ptr- is a pointer to one or more double words, words or bytes of
data

len- number of double words, words or bytes to process for
crc_calc32(), crc_calcl6(), or crc_calc8() function calls.

width- optional parameter used to specify the input data bit width
to use with the crc_calc32(), crc_calc16(), and crc_calc8()

functions. Only available on devices with a 32-bit CRC peripheral.

If not specified, it defaults to the width of the return value of the
function, 8-bit for crc_calc8(), 16-bit for crc_calc16() and 32-bit
for crc_calc32(). For device with a 16-bit for crc_calc16() and 8-
bit crc_calc8().

Returns the result of the final CRC calculation.

This will process one data double word, word or byte or len double

words, words or bytes of data using the CRC engine.
Only the devices with built in CRC module.

Nothing

intlo datal[8];

Result = crc_calc(data,8);
None

setup_crc(); crc_init()

161

TEST PCD

crc_init(mode)

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

dac_write()

Syntax:

Parameters:

Returns:

162

crc_init (data);

data - This will setup the initial value used by write CRC shift
register. Most commonly, this register is set to 0x0000 for start of
a new CRC calculation.

undefined

Configures the CRCWDAT register with the initial value used for
CRC calculations.

Only the devices with built in CRC module.
Nothing

crc_init (); // Starts the CRC accumulator out at 0

crc_init (OXFEEE); // Starts the CRC accumulator out
at OxXFEEE

None

setup_crc(), crc_calc(), crc_calc8()

dac_write (value)
dac_write (channel, value)

Value: 8-bit integer value to be written to the DAC
module
Value: 16-bit integer value to be written to the DAC
module
channel: Channel to be written to. Constants are:
DAC_RIGHT
DAC_DEFAULT
DAC_LEFT

undefined

Function:

Availability:

Requires:

Examples:

Also See:

Standard C Include Files

This function will write a 8-bit integer to the specified
DAC channel.

This function will write a 16-bit integer to the specified
DAC channel.

Only available on devices with built in digital to
analog converters.

Nothing

int i = 0;
setup dac (DAC_VDD | DAC OUTPUT) ;
while (1) {

i++;

dac write(i);
}
int i = 0;
setup dac (DAC_ RIGHT ON, 5);
while (1) {

i++;

dac_write (DAC RIGHT | 1i);
}

setup _dac(), DAC Overview, see header file for
device selected

dci_data_received()

Syntax:
Parameters:
Returns:
Function:
Availability:
Requires:

Examples:

dci_data_received()
none
An intl. Returns true if the DCI module has received data.
Use this function to poll the receive buffers. It acts as a kbhit()
function for DCI.
Only available on devices with DCI
None
while(1)
if(dci_data_received())

/Iread data, load buffers, efc...

}
163

TEST PCD

Example Files:

Also See:

dci_read()

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

164

}

None

DCI Overview, setup_dci(), dci_start(), dci_write(), dci_read(),
dci_transmit_ready()

dci_read(left channel, right channel);

left channel- A pointer to a signed int16 that will hold the incoming
audio data for the left channel (on a stereo system). This data is
received on the bus before the right channel data (for situations
where left & right channel does have meaning)

right channel- A pointer to a signed int16 that will hold the
incoming audio data for the right channel (on a stereo system).
This data is received on the bus after the data in left channel.

undefined

Use this function to read two data words. Do not use this function
with DMA. This function is provided mainly for applications
involving a stereo codec.

If your application does not use both channels but only receives
on a slot (see setup_dci), use only the left channel.

Only available on devices with DCI
None
while(1)
dci_read(&left_channel, &right_channel);

dci_write(&left_channel, &right_channel);

}

None

DCI Overview, setup_dci(), dci_start(), dci_write(),
dci_transmit_ready(), dci_data_received()

dci_start()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

Standard C Include Files

dci_start();
None
undefined

Starts the DCI module’s transmission. DCI operates in a continous
transmission mode (unlike other transmission protocols that
transmit only when they have data). This function starts the
transmission. This function is primarily provided to use DCI in
conjunction with DMA

Only available on devices with DCI.
None

dci_initialize((1I2S_MODE | DCI_MASTER |
DCI_CLOCK_OUTPUT | SAMPLE_RISING_EDGE |
UNDERFLOW_LAST |
MULTI_DEVICE_BUS),DCl_1WORD_FRAME |
DCI_16BIT_WORD | DCI_2WORD_INTERRUPT,
RECEIVE_SLOTO | RECEIVE_SLOT1, TRANSMIT_SLOTO |
TRANSMIT_SLOT1, 6000);

dci_start();

None

DCI Overview, setup_dci(), dci_write(), dci_read(),
dci_transmit_ready(), dci_data received()

dci_transmit_ready()

Syntax:

Parameters:
Returns:

Function:
Availability:

dci_transmit_ready()

None

An intl. Returns true if the DCI module is ready to transmit
(there is space open in the hardware buffer).

Use this function to poll the transmit buffers.

Only available on devices with DCI

165

TEST PCD

Requires:
Examples:

Example
Files:

Also See:

dci_write()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

166

None
while(1)

if(dci_transmit_ready())

/ltransmit data, load buffers, etc...

}
}

None

DCI Overview, setup_dci(), dci_start(), dci_write(), dci_read(),
dci_data received()

dci_write(left channel, right channel);

left channel- A pointer to a signed int16 that holds the outgoing
audio data for the left channel (on a stereo system). This data is
transmitted on the bus before the right channel data (for situations
where left & right channel does have meaning)

right channel- A pointer to a signed intl16 that holds the outgoing
audio data for the right channel (on a stereo system). This data is
transmitted on the bus after the data in left channel.

undefined

Use this function to transmit two data words. Do not use this
function with DMA. This function is provided mainly for applications
involving a stereo codec.

If your application does not use both channels but only transmits

on a slot (see setup_dci()), use only the left channel. If you

transmit more than two slots, call this function multiple times.

Only available on devices with DCI

None

while(1)

{ dci_read(&left_channel, &right_channel);
dci_write(&left_channel, &right_channel);

}

None

DCI Overview, setup_dci(), dci_start(), dci_read(),
dci_transmit_ready(), dci_data received()

Standard C Include Files

delay cycles()

Syntax: delay_cycles (count)

Parameters: count - a constant 1-255

Returns: undefined

Function: Creates code to perform a delay of the specified number of

instruction clocks (1-255). An instruction clock is equal to four
oscillator clocks.

The delay time may be longer than requested if an interrupt is
serviced during the delay. The time spent in the ISR does not
count toward the delay time.

Availability: All devices
Requires: Nothing
Examples: delay cycles(1); // Same as a NOP

delay cycles(25); // At 20 mhz a 5us delay

Example ex_cust.c
Files:
Also See: delay us(), delay ms()

delay_ms()

Syntax: delay_ms (time)
Parameters: time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an
int16, now the upper byte affects the time.

Returns: undefined

Function: This function will create code to perform a delay of the specified
length. Time is specified in milliseconds. This function works by
executing a precise number of instructions to cause the requested
delay. It does not use any timers. If interrupts are enabled the
time spent in an interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is
serviced during the delay. The time spent in the ISR does not
count toward the delay time.

Availability: All devices

167

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Requires:
Examples:

Example
Files:
Also See:

delay_us()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

168

#USE DELAY
#use delay (clock=20000000)

delay ms(2);

void delay seconds (int n) {
for (;n!=0; n- -)
delay ms(1000);

}

ex_sqw.c

delay us(), delay cycles(), #USE DELAY

delay_us (time)
time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an
int16, now the upper byte affects the time.

undefined

Creates code to perform a delay of the specified length. Time is
specified in microseconds. Shorter delays will be INLINE code and
longer delays and variable delays are calls to a function. This
function works by executing a precise number of instructions to
cause the requested delay. It does not use any timers. If
interrupts are enabled the time spent in an interrupt routine is not
counted toward the time.

The delay time may be longer than requested if an interrupt is
serviced during the delay. The time spent in the ISR does not
count toward the delay time.

All devices

#USE DELAY

#use delay(clock=20000000)

do {

output high(PIN BO);
delay us(duty);
output low (PIN_BO);
delay us(period-duty);
} while (TRUE) ;

ex_sqw.c

delay ms(), delay cycles(), #USE DELAY

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

disable _interrupts()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

disable_interrupts (name)

disable_interrupts (INTR_XX)
disable_interrupts (expression)

name - a constant defined in the devices .h file

INTR_XX — Allows user selectable interrupt options like
INTR_NORMAL, INTR_ALTERNATE, INTR_LEVEL

expression — A non-constant expression

When INTR_LEVELX is used as a parameter, this function will
return the previous level.

Name - Disables the interrupt for the given name. Valid specific
names are the same as are used in #INT_xxx and are listed in the
devices .h file. Note that it is not necessary to disable interrupts
inside an interrupt service routine since interrupts are
automatically disabled.

INTR_GLOBAL - Disables all interrupts that can be disabled
INTR_NESTING — Disallows an interrupt from interrupting another
INTR_NORMAL — Use normal vectors for the ISR
INTR_ALTERNATE — Use alternate vectors for the ISR

INTR_LEVELO .. INTR_LEVEL7 — Disables interrupts at this level
and below, enables interrupts above this level

INTR_CN_PIN | PIN_xx — Disables a CN pin interrupts

expression — Disables interrupts during evaluation of the
expression.
All dsPIC and PIC24 devices
Should have a #INT_xxxx, constants are defined in the devices .h
file.
disable interrupts (INT RDA); // RS232 OFF
disable interrupts(memcpy (bufferl,buffer2,10)) ;
enable interrupts (ADC DONE) ;
enable interrupts (RB CHANGE) ;

// these enable the interrupts

None

enable interrupts(), #INT xxxX, Interrupts Overview

169

TEST PCD

div() Idiv()

Syntax: idiv=div(num, denom)
Idiv =Idiv(Inum, Idenom)
Parameters: num and denom are signed integers.

num is the numerator and denom is the
denominator.

Inum and Idenom are signed longs , signed int32,
int48 or int64

Inum is the numerator and Idenom is the
denominator.

Returns: idiv is a structure of type div_t and lidiv is a structure
of type Idiv_t. The div function returns a structure of
type div_t, comprising of both the quotient and the
remainder. The Idiv function returns a structure of
type Idiv_t, comprising of both the quotient and the
remainder.

Function: The div and Idiv function computes the quotient and
remainder of the division of the numerator by the
denominator. If the division is inexact, the
resulting quotient is the integer or long of lesser
magnitude that is the nearest to the algebraic
quotient. If the result cannot be represented, the
behavior is undefined; otherwise
guot*denom(ldenom)+rem shall equal num(lnum).

Availability: All devices.
Requires: #INCLUDE <STDLIB.H>
Examples: div_t idiv;

ldiv_t lidiv;
idiv=div (3,2);
//idiv will contain quot=1 and rem=1

1lidiv=1div (300,250);
//1lidiv will contain lidiv.quot=1 and lidiv.rem=50

Example None
Files:
Also See: None

dma_start()

Syntax: dma_start(channel, mode, addressA, addressB,
count);
Parameters: Channel- The channel used in the DMA transfer

170

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

dma_status()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Standard C Include Files

mode - The mode used for the DMA transfer.

addressA- The start RAM address of the buffer to
use located within the DMA RAM bank.

addressB- If using PING_PONG mode the start
RAM address of the second buffer to use located
within the DMA RAM bank.

void

Starts the DMA transfer for the specified channel in
the specified mode of operation.

Devices that have the DMA module.
Nothing

dma start (2, DMA CONTINOUS | DMA PING PONG, 0x4000,
0x4200,255) ;

// This will setup the DMA channel 2 for continuous
ping-pong mode with DMA RAM addresses of 0x4000 and
0x4200.

None

setup_dma(), dma_status()

Value = dma_status(channel);

Channel — The channel whose status is to be
queried.

Returns a 8-bit int. Possible return values are :
DMA_IN_ERROR 0x01

DMA_OUT_ERROR 0x02

DMA B _SELECT 0x04

This function will return the status of the specified
channel in the DMA module.

Devices that have the DMA module.
Nothing

171

TEST PCD

Examples:

Example
Files:

Also See:

Int8 value;
value = dma status(3); // This will return the
status of channel 3 of the DMA module.

None

setup_dma(), dma_start().

enable_interrupts()

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:
172

enable_interrupts (name)
enable_interrupts (INTR_XX)

name- a constant defined in the devices .h file

INTR_XX — Allows user selectable interrupt options like
INTR_NORMAL, INTR_ALTERNATE, INTR_LEVEL

undefined

Name -Enables the interrupt for the given name. Valid specific
names are the same as are used in #INT_xxx and are listed in the
devices .h file.

INTR_GLOBAL — Enables all interrupt levels (same as
INTR_LEVELO)

INTR_NESTING — Enables one interrupt to interrupt another
INTR_NORMAL - Use normal vectors for the ISR
INTR_ALTERNATE — Use alternate vectors for the ISR

INTR_LEVELO .. INTR_LEVEL7 — Enables interrupts at this level
and above, interrupts at lower levels are disabled

INTR_CN_PIN | PIN_xx — Enables a CN pin interrupts

All dsPIC and PIC24 devices

Should have a #INT_xxxx, Constants are defined in the devices .h
file.

enable interrupts (INT TIMERO) ;

enable_interrupts (INT_TIMER1);

enable interrupts (INTR CN PIN|Pin BO);

None

disable enterrupts(), #INT xxxx, Interrupts Overview

Standard C Include Files

erase_program_memory

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

exp()

Syntax:

Parameters:

Returns:
Function:

erase_program_memory (address);
address is 32 bits. The least significant bits may be ignored.
undefined

Erases FLASH_ERASE_SIZE bytes to OxFFFF in program
memory. FLASH_ERASE_SIZE varies depending on the part.

Family FLASH_ERASE_SIZE
dsPIC30F 32 instructions (96 bytes)
dsPIC33FJ 512 instructions (1536 bytes)
PIC24FJ 512 instructions (1536 bytes)
PIC24HJ 512 instructions (1536 bytes)

NOTE: Each instruction on the PCD is 24 bits wide (3 bytes)
See write_program_memory() for more information on program
memory access.

All devices
Nothing

Int32 address = 0x2000;

erase program memory (address); // erase block of
memory from 0x2000 to 0x2400 for a PIC24HJ/FJ /33FJ
device, or erase 0x2000 to 0x2040 for a dsPIC30F
chip

None

write program memory(), Program Eeprom Overview

result = exp (value)
value is any float type
A float with a precision equal to value

Computes the exponential function of the
argument. This is e to the power of value where e is
the base of natural logarithms. exp(1) is 2.7182818.

Note on error handling:
If "errno.h" is included then the domain and range

173

TEST PCD

errors are stored in the errno variable. The user can
check the errno to see if an error has occurred and
print the error using the perror function.

Range error occur in the following case:
e exp: when the argument is too large

Availability: All devices

Requires: #INCLUDE <math.h>

Examples: // Calculate x to the power of y
x power y = exp(y * log(x));

Example None

Files:

Also See: pow(), log(), log10()

ext_int_edge()

Syntax: ext_int_edge (source, edge)

Parameters: source is a constant 0,1 or 2 for the PIC18XXX
and 0 otherwise. Source is optional and defaults to
0

edgeisaconstant H_TO_L orL_TO_H
representing "high to low" and "low to high"
Returns: undefined
Function: Determines when the external interrupt is acted
upon. The edge maybe L TO HorH _TO L to
specify the rising or falling edge.

Availability: Only devices with interrupts (PCM and PCH)

Requires: Constants are in the devices .h file

Examples: ext int edge(2, L TO H); // Set up PIC18 EXTI2
ext int edge(H TO L); // Sets up EXT

Example ex_wakup.c

Files:

Also See: #INT_EXT , enable_interrupts() ,

disable interrupts , Interrupts Overview

fabs()

Syntax: result=fabs (value)

Parameters: value is any float type

Returns: result is a float with precision to value

Function: The fabs function computes the absolute value of
a float

174

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Availability:
Requires:

Examples:

Example Files:

Also See:

floor()

Syntax:
Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

fmod()

Syntax:
Parameters:

Returns:

Function:

Standard C Include Files

All devices.

#INCLUDE <math.h>

double result;
result=fabs (-40.0)
// result is 40.0

None
abs(), labs()

result = floor (value)
value is any float type

result is a float with precision equal to value

Computes the greatest integer value not greater
than the argument. Floor (12.67) is 12.00.

All devices.
#INCLUDE <math.h>

// Find the fractional part of a value

frac = value - floor(value);

None

ceil()

result= fmod (vall, val2)

vall is any float type

val2 is any float type

result is a float with precision equal to input
parameters vall and val2

Returns the floating point remainder of
vall/val2. Returns the value vall - i*val2 for some

integer “i” such that, if val2 is nonzero, the result has
the same sign as vall and magnitude less than the

175

TEST PCD

magnitude of val2.

Availability: All devices.
Requires: #INCLUDE <math.h>
Examples: float result;

result=fmod (3, 2) ;
// result is 1

Example None
Files:
Also See: None

free()

Syntax: free(ptr)

Parameters: ptr is a pointer earlier returned by the calloc, malloc
or realloc.

Returns: No value

Function: The free function causes the space pointed to by the

ptr to be deallocated, that is made available for
further allocation. If ptr is a null pointer, no action
occurs. If the ptr does not match a pointer earlier
returned by the calloc, malloc or realloc, or if the
space has been deallocated by a call to free or
realloc function, the behavior is undefined.

Availability: All devices.
Requires: #INCLUDE <stdlibm.h>
Examples: int * iptr;

iptr=malloc (10);
free (iptr)
// iptr will be deallocated

Example None
Files:
Also See: realloc(), malloc(), calloc()

frexp()

Syntax: result=frexp (value, & exp);
Parameters: value is any float type
exp is a signed int.
Returns: result is a float with precision equal to value
Function: The frexp function breaks a floating point number

into a normalized fraction and an integral power of
176

Standard C Include Files

2. It stores the integer in the signed int object

exp. The result is in the interval [1/2,1) or zero, such
that value is result times 2 raised to power exp. If
value is zero then both parts are zero.

Availability: All devices.
Requires: #INCLUDE <math.h>
Examples: float result;

signed int exp;
result=frexp (.5, &exp) ;
// result is .5 and exp is O

Example None
Files:
Also See: Idexp(), exp(), loa(), logl0(), modf()

get_capture()

Syntax: value = get_capture(x, wait)
Parameters: x defines which input capture result buffer module to
read from

wait signifies if the compiler should read the oldest
result in the buffer or the next result to enter the

buffer
Returns: A 16-bit timer value.
Function: If wait is true, the the current capture values in the

result buffer are cleared, an the next result to be sent
to the buffer is returned. If wait is false, the default
setting, the first value currently in the buffer is
returned. However, the buffer will only hold four
results while waiting for them to be read, so if read
isn't being called for every capture event, when wait
is false, the buffer will fill with old capture values and
any new results will be lost.

Availability: Only available on devices with Input Capture
modules

Requires: None

Examples: setup_timer3 (TMR_INTERNAL | TMR DIV BY 8);

setup capture(2, CAPTURE FE | CAPTURE TIMER3);
while (TRUE) {

177

TEST PCD

Example
Files:
Also See:

timerValue = get capture (2, TRUE);
printf (“Capture 2 occurred at: $LU”,
timerValue) ;

}
None

setup_capture(), setup_compare(), Input Capture
Overview

get_motor_pwm_count()

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:
Examples:
Example

Files:
Also See:

get_ticks()
Syntax:

Parameters:
Returns:

Function:

Availability:

Requires:

178

Datal6 = get_motor_pwm_count(pwm);

pwm- Defines the pwm module used.
time- The event time for the PWM unit.

16 bits of data

Returns the PWM event on the motor control unit.
Devices that have the motor control PWM unit.
None

Datal6 = get motor pmw event(l);

None

setup_motor pwm(), set_motor _unit(),
set_motor pwm_event(), set_motor pwm_duty();

value = get_ticks();
None

value — a 8, 16, 32 or 64 bit integer. (int8, int16, int32
or int64)

Returns the current tick value of the tick timer. The
size returned depends on the size of the tick timer.
All devices.

#USE TIMER(options)

Examples:

Example
Files:

Also See:

get_timerA()
Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Example
Files:
Also See:

get _timerB()

Syntax:
Parameters:
Returns:
Function:

Standard C Include Files

#USE TIMER (TIMER=1,TICK=1lms,BITS=16,NOISR)

void main (void) {
unsigned intl6 current tick;

current tick = get ticks();

}

None

#USE TIMER, set_ticks()

value=get_timerA();
none
The current value of the timer as an int8

Returns the current value of the timer. All timers
count up. When a timer reaches the maximum value
it will flip over to 0 and continue counting (254, 255,
0,1,2,...).

This function is only available on devices with Timer
A hardware.

Nothing
set timerA(0);
while (timerA < 200);

none

set_timerA(), setup_timer_A(), TimerA Overview

value=get_timerB();

none

The current value of the timer as an int8

Returns the current value of the timer. All timers
count up. When a timer reaches the maximum value
it will flip over to 0 and continue counting (254, 255,
0,1,2,...).

179

TEST PCD

Availability:

Requires:
Examples:

Example

Files:
Also See:

get_timerx()

Syntax:

Parameters:
Returns:
Function:

Availability:

Requires:
Examples:

Example

Files:
Also See:

get_timerxy()

Syntax:

Parameters:
Returns:
Function:

Availability:

180

This function is only available on devices with Timer
B hardware.

Nothing

set timerB(0);

while (timerB < 200);

none

set_timerB(), setup_timer_B(), TimerB Overview

value=get_timer1()

value=get_timer2()

value=get_timer3()

value=get_timer4()

value=get_timer5()

value=get_timer6()

value=get_timer7()

value=get_timer8()

value=get_timer9()

None

The current value of the timer as an int16
Retrieves the value of the timer, specified by X
(which may be 1-9)

This function is available on all devices that have a
valid timerX.

Nothing

if(get_timerZ() $ 0xA0 == HALF_WAVE_PERIOD)
output toggle (PIN BO);

ex_stwt.c

Timer Overview , setup_timerX(), get_timerXY(),
set_timerX(), set_timerXY()

value=get_timer23()

value=get_timer45()

value=get_timer67()

value=get_timer89()

Void

The current value of the 32 bit timer as an int32
Retrieves the 32 bit value of the timers X and Y,
specified by XY(which may be 23, 45, 67 and 89)
This function is available on all devices that have a
valid 32 bit enabled timers. Timers 2 & 3,4 &5,6 &7

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

and 8 & 9 may be used. The target device must have
one of these timer sets. The target timers must be
enabled as 32 bit.

Requires: Nothing
Examples: if (get timer23() > TRIGGER_ TIME)
ExecuteEvent () ;

Example ex_stwt.c
Files:
Also See: Timer Overview, setup_timerX(), get_timerXY(),

set_timerX(), set_timerXY()

get_tris_x()
Syntax: value = get_tris_A();
value = get_tris_B();
value = get_tris_C();
value = get_tris_D();
value = get_tris_E();
value = get_tris_F();
value = get_tris_G();
value = get_tris_H();
value = get_tris_J();
value = get_tris_K()
Parameters: None
Returns: intl6, the value of TRIS register
Function: Returns the value of the TRIS register of port A, B, C, D, E, F,
G, H, J, or K.
Availability: All devices.
Requires: Nothing
Examples: tris a = GET_TRIS A();
Example None
Files:
Also See: input(), output low(), output_high()

getc() getch() getchar() fgetc()

Syntax: value = getc()
value = fgetc(stream)
value=getch()
value=getchar()

Parameters: stream is a stream identifier (a constant byte)
Returns: An 8 bit character

181

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

getenv()

Syntax:
Parameters:
Returns:
Function:

182

This function waits for a character to come in over the RS232 RCV
pin and returns the character. If you do not want to hang forever
waiting for an incoming character use kbhit() to test for a character
available. If a built-in USART is used the hardware can buffer 3
characters otherwise GETC must be active while the character is
being received by the PIC®.

If fgetc() is used then the specified stream is used where getc()
defaults to STDIN (the last USE RS232).
All devices
#USE RS232
printf ("Continue (Y,N)?");
do {
answer=getch () ;
}while (answer!='Y' && answer!='N");

#use rs232(baud=9600, xmit=pin c6,
rcv=pin c7,stream=HOSTPC)

#use rs232(baud=1200,xmit=pin bl,
rcv=pin b0, stream=GPS)

#use rs232(baud=9600,xmit=pin b3,
stream=DEBUG)

while (TRUE) {
c=fgetc (GPS) ;
fputc (c, HOSTPC) ;
if (c==13)
fprintf (DEBUG, "Got a CR\r\n");
}

ex_stwt.c

putc(), kbhit(), printf(), #USE RS232, input.c, RS232 1/0 Overview

value = getenv (cstring);
cstring is a constant string with a recognized keyword
A constant number, a constant string or 0

This function obtains information about the execution
environment. The following are recognized keywords. This
function returns a constant O if the keyword is not understood.

FUSE_SET:fffff fffff Returns 1 if fuse fffff is enabled
FUSE_VALID:fffff fffff Returns 1 if fuse fffff is valid
INT:iiiii Returns 1 if the interrupt iiiii is valid
ID Returns the device ID (set by #ID)
DEVICE Returns the device name string (like

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

CLOCK
VERSION
VERSION_STRING

PROGRAM_MEMOR
Y

STACK
SCRATCH

DATA_EEPROM

EEPROM_ADDRESS

READ_PROGRAM

ADC_CHANNELS
ADC_RESOLUTION

ICD

SPI

USB

CAN
I2C_SLAVE

I2C_MASTER

PSP
COMP

VREF
LCD

UART
AUART

CCPx
TIMERX
FLASH_WRITE_SIZ

E
FLASH_ERASE_SIZ

Standard C Include Files

"PIC16C74")

Returns the MPU FOSC

Returns the compiler version as a float
Returns the compiler version as a string
Returns the size of memory for code (in
words)

Returns the stack size

Returns the start of the compiler scratch
area

Returns the number of bytes of data
EEPROM

Returns the address of the start of
EEPROM. 0 if not supported by the
device.

Returns a 1 if the code memory can be
read

Returns the number of A/D channels

Returns the number of bits returned from
READ_ADC()

Returns a 1 if this is being compiled for a
ICD

Returns a 1 if the device has SPI
Returns a 1 if the device has USB
Returns a 1 if the device has CAN

Returns a 1 if the device has I12C slave
H/W

Returns a 1 if the device has I12C master
H/W

Returns a 1 if the device has PSP
Returns a 1 if the device has a
comparator

Returns a 1 if the device has a voltage
reference

Returns a 1 if the device has direct LCD
H/W

Returns the number of H/W UARTSs

Returns 1 if the device has an ADV
UART

Returns a 1 if the device has CCP
number x

Returns a 1 if the device has TIMER
number x

Smallest number of bytes that can be
written to FLASH

Smallest number of bytes that can be
183

TEST PCD

Availability:
Requires:

Examples:

184

E

BYTES_PER_ADDR
ESS

BITS_PER_INSTRU
CTION

RAM

SFR:name

BIT:name

SFR_VALID:name

BIT_VALID:name

PIN:PB
UARTX_RX
UARTXx_TX
SPIx_DI
SPIXDO
SPIXCLK
ICx

OCx

All devices

Nothing

erased in FLASH

Returns the number of bytes at an
address location

Returns the size of an instruction in bits

Returns the number of RAM bytes
available for your device.

Returns the address of the specified
special file register. The output format
can be used with the preprocessor
command #bit. name must match SFR
denomination of your target PIC
(example: STATUS, INTCON, TXREG,
RCREG, etc)

Returns the bit address of the specified
special file register bit. The output format
will be in “address:bit”, which can be
used with the preprocessor command
#byte. name must match SFR.bit
denomination of your target PIC
(example: C, Z, GIE, TMROIF, etc)
Returns TRUE if the specified special file
register name is valid and exists for your
target PIC (example:
getenv("SFR_VALID:INTCON"))

Returns TRUE if the specified special file
register bit is valid and exists for your
target PIC (example:
getenv("BIT_VALID:TMROIF"))

Returns 1 if PB is a valid 1/0O PIN (like A2)
Returns UARTXPin (like PINXC7)
Returns UARTXPin (like PINXC6)
Returns SPIxDI Pin

Returns SPIXDO Pin

Returns SPIXCLK Pin

Returns TRUE if ICx is on this part
Returns TRUE if OCx is on this part

#IF getenv ("VERSION")<3.050
#ERROR Compiler version too old

#ENDIF

Example
Files:

Also See:

gets() fgets()

Syntax:
Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Standard C Include Files

for (i=0; i<getenv ("DATA EEPROM");i++)
write eeprom(i,0);

#IF getenv ("FUSE VALID:BROWNOUT")

#FUSE BROWNOUT
#ENDIF

#byte status reg=GETENV (“SFR:STATUS")

#bit carry flag=GETENV (“BIT:C”)
None

None

gets (string)
value = fgets (string, stream)

string is a pointer to an array of characters. Stream is a stream
identifier (a constant byte)

undefined

Reads characters (using getc()) into the string until a RETURN
(value 13) is encountered. The string is terminated with a 0. Note
that INPUT.C has a more versatile get_string function.

If fgets() is used then the specified stream is used where gets()
defaults to STDIN (the last USE RS232).

All devices
#USE RS232

char string([30];

printf ("Password: ");

gets (string) ;

if (strcmp (string, password))
printf ("OK") ;

None

getc(), get_string in input.c
185

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

goto_address()

Syntax: goto_address(location);

Parameters: location is a ROM address, 16 or 32 bit int.

Returns: Nothing

Function: This function jumps to the address specified by location. Jumps outside of the

current function should be done only with great caution. This is not a normally
used function except in very special situations.

Availability: All devices
Requires: Nothing
Examples: #define LOAD REQUEST PIN Bl

#define LOADER 0x1f00

if (input (LOAD REQUEST))
goto address (LOADER) ;

Example setimp.h
Files:

Also See: label _address()

high _speed_adc_done()
Syntax: value = high_speed_adc_done([pair]);

Parameters: pair — Optional parameter that determines which ADC pair's ready
flag to check. If not used all ready flags are checked.

Returns: An intl6. If pair is used 1 will be return if ADC is done with
conversion, 0 will be return if still busy. If pair isn't use it will return a
bit map of which conversion are ready to be read. For example a
return value of 0x0041 means that ADC pair 6, AN12 and AN13,
and ADC pair 0, ANO and AN1, are ready to be read.

Function: Can be polled to determine if the ADC has valid data to be read.

Availability: Only on devices with a built-in high-speed analog to digital
converter.

Requires: None

186

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

Examples: intl6 result[2]
setup high speed adc pair (1,
INDIVIDUAL SOFTWARE TRIGGER) ;
setup high speed adc(ADC CLOCK DIV 4);

read high speed adc(1l, ADC_ START ONLY) ;

while (!'high speed adc done(l));

read high speed adc (1, ADC_READ ONLY, result);
printf (“AN2 value = $LX, AN3 value =

$LX\n\r”, result[0], result[1l]);

Example Files: None

Also See: setup_high speed adc(), setup _high speed adc pair(),
read _high speed adc()

i12c_isr_state()

Syntax: state = i2c_isr_state();
state = i2c_isr_state(stream);

Parameters: None

Returns: state is an 8 bit int
0 - Address match received with R/W bit clear, perform i2c_read() to read the
12C address.

1-0x7F - Master has written data; i2c_read() will immediately return the data
0x80 - Address match received with R/W bit set; perform i2c_read() to read the
12C address, and use i2c_write() to pre-load the transmit buffer for the next
transaction (next I12C read performed by master will read this byte).
0x81-0xFF - Transmission completed and acknowledged; respond with
i2c_write() to pre-load the transmit buffer for the next transation (the next 12C
read performed by master will read this byte).

Function: Returns the state of 12C communications in 12C slave mode after an SSP
interrupt. The return value increments with each byte received or sent.

If Ox00 or 0x80 is returned, an i2C_read() needs to be performed to read the
12C address that was sent (it will match the address configured by #USE 12C so
this value can be ignored)

Availability: Devices with i2c hardware
Requires: #USE 12C

187

TEST PCD

Examples:

Example
Files:

Also See:

#INT SSP
void i2c _isr() {
state = i2c_isr state();
if ((state==) || (state== 0x80))
i@c read();
if (state >= 0x80)
i2c _write(send buffer([state - 0x80]);
else if(state > 0)
rcv_buffer([state - 1] = i2c read();

}
ex_slave.c

i2c_poll, i2c_speed, i2c_start, i2c_stop, i2¢c_slaveaddr, i2c_write, i2c_read,
#USE 12C, 12C Overview

i12c_poll()

Syntax:

Parameters:
Returns:
Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

i2c_poll()

i2c_poll(stream)

stream (optional)- specify the stream defined in #USE 12C

1 (TRUE) or 0 (FALSE)

The [2C_POLL() function should only be used when the built-in
SSP is used. This function returns TRUE if the hardware has a
received byte in the buffer. When a TRUE is returned, a call to
12C_READ() will immediately return the byte that was received.
Devices with built in 12C

#USE 12C

i2c_start(); // Start condition

i2c write(0Oxcl); // Device address/Read
count=0;

while (count!=4) {
while (!i2c poll()) ;
buffer[count++]= i2c read(); //Read Next
}
i2c stop(); // Stop condition
ex_slave.c

i2c_speed, i2c_start, i2c_stop, i2¢c_slaveaddr, i2c_isr_state,
i2c_write, i2c_read, #USE 12C, 12C Overview

12c_read()

Syntax:

188

data = i2c_read();
data = i2c_read(ack);
data = i2c_read(stream, ack);

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

Standard C Include Files

ack -Optional, defaults to 1.

0 indicates do not ack.

1 indicates to ack.

stream - specify the stream defined in #USE 12C

data - 8 bit int

Reads a byte over the 12C interface. In master mode this function
will generate the clock and in slave mode it will wait for the

clock. There is no timeout for the slave, use i2c_poll() to prevent a
lockup. Use restart_wdt() in the #USE 12C to strobe the watch-
dog timer in the slave mode while waiting.

All devices.

#USE 12C

i2c start();

i2ciwrite(0xa1);

datal = i2c read () ;

data?2 = i2c_read();

i2c_stop();_

ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2¢c_start, i2c_stop, i2c_slaveaddr,
i2c_isr_state, i2c_write, #USE 12C, I12C Overview

i12c_slaveaddr()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

12C_SlaveAddr(addr);

I12C_SlaveAddr(stream, addr);

addr = 8 bit device address

stream(optional) - specifies the stream used in #USE 12C
nothing

This functions sets the address for the 12C interface in slave
mode.

Devices with built in 12C

#USE 12C

i2c_SlaveAddr (0x08) ;
i2c_SlaveAddr (i2cStreaml, 0x08);

ex_slave.c

i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_isr_state, i2c_write,
i2c_read, #USE I2C, 12C Overview

189

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

12c_speed()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:
Example Files:
Also See:

12c_start()

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

190

i2c_speed (baud)

i2c_speed (stream, baud)

baud is the number of bits per second.

stream - specify the stream defined in #USE [2C

Nothing.

This function changes the I12c bit rate at run time. This only works if
the hardware 12C module is being used.

All devices.

#USE 12C

I2C Speed (400000);

none

i2c_poll, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write,
i2c_read, #USE 12C, 12C Overview

i2c_start()

i2c_start(stream)

i2c_start(stream, restart)

stream: specify the stream defined in #USE [2C

restart: 2 — new restart is forced instead of start

1 — normal start is performed

0 (or not specified) — restart is done only if the compiler last
encountered a 12C_START and no 12C_STOP

undefined

Issues a start condition when in the 12C master mode. After the
start condition the clock is held low until I2C_WRITE() is called. If
another 12C_start is called in the same function before an i2c_stop
is called, then a special restart condition is issued. Note that
specific 12C protocol depends on the slave device. The
I2C_START function will now accept an optional parameter. If 1
the compiler assumes the bus is in the stopped state. If 2 the
compiler treats this I2C_START as a restart. If no parameter is
passed a 2 is used only if the compiler compiled a I12C_START last
with no 12C_STOP since.

All devices.

#USE 12C

i2c_start();

i2c write (0xa0); // Device address

i2c write(address); // Data to device

i2c start(); // Restart

i2c_write(Oxal); // to change data direction
data=i2c_read(0); // Now read from slave

Example Files:

Also See:

12c_stop()

Syntax:

Parameters:
Returns:
Function:
Availability:
Requires:
Examples:

Example
Files:

Also See:

12c_write()
Syntax:

Parameters:

Returns:

Function:

Availability:

Standard C Include Files

i2c _stop();
ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2c_stop, i2c_slaveaddr, i2c_isr_state,
i2c_write, i2c_read, #USE 12C, 12C Overview

i2c_stop()

i2c_stop(stream)

stream: (optional) specify stream defined in #USE 12C
undefined

Issues a stop condition when in the [2C master mode.
All devices.

#USE 12C

i2c_start // Start condition

()7
i2c write(0xa0); // Device address
i2c_write(5); // Device command
i2c write(12); // Device data
i2c stop(); // Stop condition

ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2c_start, i2c_slaveaddr, i2c_isr_state,
i2c_write, i2c_read, #USE 12C, 12C Overview

i2c_write (data)

i2c_write (stream, data)

data is an 8 bit int

stream - specify the stream defined in #USE [2C

This function returns the ACK Bit.

0 means ACK, 1 means NO ACK, 2 means there was a collision if
in Multi_Master Mode.

This does not return an ACK if using i2c in slave mode.

Sends a single byte over the 12C interface. In master mode this
function will generate a clock with the data and in slave mode it will
wait for the clock from the master. No automatic timeout is
provided in this function. This function returns the ACK bit. The
LSB of the first write after a start determines the direction of data
transfer (0 is master to slave). Note that specific 12C protocol
depends on the slave device.

All devices.

191

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()

TEST PCD

Requires:
Examples:

Example
Files:

Also See:

input()

Syntax:
Parameters:

Returns:

Function:

Availability:
Requires:
Examples:

192

#USE 12C

long cmd;

i2c_start(); // Start condition

i2c write(0xa0);// Device address

i2c write(cmd);// Low byte of command
i2c_write(cmd>>8);// High byte of command
i2c stop(); // Stop condition

ex_extee.c with 2416.c

i2c_poll, i2c_speed, i2c_start, i2c_stop, i2¢c_slaveaddr,

i2c_isr_state, i2c_read, #USE 12C, 12C Overview

value = input (pin)

Pin to read. Pins are defined in the devices .h

file. The actual value is a bit address. For example,
port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as

follows: #define PIN_A3 5651 .

The PIN could also be a variable. The variable must
have a value equal to one of the constants (like
PIN_A1) to work properly. The tristate register is
updated unless the FAST_I0 mode is set on port A.
note that doing I/0 with a variable instead of a
constant will take much longer time.

0 (or FALSE) if the pin is low,

1 (or TRUE) if the pin is high

This function returns the state of the indicated

pin. The method of I/O is dependent on the last USE
* 10 directive. By default with standard I/O before
the input is done the data direction is set to input.
All devices.

Pin constants are defined in the devices .h file
while (!input (PIN Bl));

// waits for Bl to go high

if (input (PIN_AO0))
printf ("A0 is now high\r\n");

int16 i=PIN B1;
while (!1);
//waits for Bl to go high

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()

Example Files:
Also See:

Standard C Include Files

ex_pulse.c

input_x(), output low(), output_high(), #USE
FIXED IO, #USE FAST 10, #USE STANDARD 10,
General Purpose 1/0O

input_change_x()

Syntax:

Parameters:
Returns:
Function:

Availability:
Requires:
Examples:
Example Files:
Also See:

input_state()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:

value = input_change_a();

value = input_change_b();

value = input_change_c();

value = input_change_d();

value = input_change_e();

value = input_change_f();

value = input_change_g();

value = input_change_h();

value = input_change_j();

value = input_change_K();

None

An 8-bit or 16-bit int representing the changes on the port.

This function reads the level of the pins on the port and compares
them to the results the last time the input_change_x() function was
called. A 1 is returned if the value has changed, 0 if the value is
unchanged.

All devices.

None

pin check = input change b();

None

input(), input_x(), output_x(), #USE FIXED 10, #USE FAST |0,
#USE STANDARD 10, General Purpose 1/0

value = input_state(pin)

pin to read. Pins are defined in the devices .h file.
The actual value is a bit address. For example, port
a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as

follows: #define PIN_A3 5651 .

Bit specifying whether pin is high or low. A 1
indicates the pin is high and a O indicates it is low.
This function reads the level of a pin without
changing the direction of the pin as INPUT() does.
All devices.

Nothing

193

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Examples:

Example Files:
Also See:

input_x()

Syntax:

Parameters:
Returns:
Function:

Availability:
Requires:
Examples:
Example Files:
Also See:

level = input state(pin A3);

printf ("level: %d",level);

None

input(), set_tris_x(), output low(), output _high(),
General Purpose 1/0

value = input_a()

value = input_b()

value = input_c()

value = input_d()

value = input_e()

value = input_f()

value = input_g()

value = input_h()

value = input_j()

value = input_k()

None

An 16 bit int representing the port input data.

Inputs an entire word from a port. The direction register is changed
in accordance with the last specified #USE *_|O directive. By
default with standard I/O before the input is done the data direction
is set to input.

All devices.

Nothing

data = input b ();

ex_psp.c

input(), output x(), #USE FIXED_ 10, #USE FAST 10, #USE
STANDARD_ 10

interrupt_active()

Syntax: interrupt_active (interrupt)

Parameters: Interrupt — constant specifying the interrupt

Returns: Boolean value

Function: The function checks the interrupt flag of the specified interrupt and returns true

in case the flag is set.

Availability: Device with interrupts (PCM and PCH)

194

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

Requires: Should have a #INT_xxxx, Constants are defined in the devices .h file.

Examples: interrupt active (INT TIMERO) ;
interrupt active (INT TIMERI1);

Example None
Files:
Also See: disable interrupts() , #INT , Interrupts Overview

isalnum(char)
isalpha(char) isdigit(char)
islower(char)
Isspace(char)
iIsupper(char)
isxdigit(char) iscntrl(x)
isgraph(x) isprint(x)

Ispunct(x)

Syntax: value = isalnum(datac)
value = isalpha(datac)
value = isdigit(datac)
value = islower(datac)
value = isspace(datac)
value = isupper(datac)
value = isxdigit(datac)
value = iscntrl(datac)
value = isgraph(datac)
value = isprint(datac)
value = punct(datac)

Parameters: datac is a 8 bit character

Returns: 0 (or FALSE) if datac dose not match the criteria, 1 (or TRUE) if

datac does match the criteria.

Function: Tests a character to see if it meets specific criteria as follows:
isalnum(x) Xis 0..9,'A'.."Z', or'a'..'z'
isalpha(x) Xis'A'.."Z'or'a'..'z
isdigit(x) Xis'0..'9'
islower(x) Xis'a'..'z'
isupper(x) Xis'A'..'Z
isspace(x) X is a space

195

TEST PCD

Availability:
Requires:
Examples:

Example Files:
Also See:

iIsamong()

Syntax:
Parameters:

Returns:
Function:
Availability:

Requires:
Examples:

Example Files:
Also See:

196

isxdigit(x) Xis'0..'9", 'A'.'F, or 'a'..'f
iscntrl(x) X is less than a space
isgraph(x) X is greater than a space
isprint(x) X is greater than or equal to a space
ispunct(x) X is greater than a space and not a letter or
number
All devices.

#INCLUDE <ctype.h>
char 1d[20];

if (isalpha (id[0])) {

valid id=TRUE;

for(i=1;i<strlen (id);i++)

valid id=valid id && isalnum(id[i]);
} else

valid id=FALSE;
ex_str.c

isamong()

result = isamong (value, cstring)

value is a character

cstring is a constant sting

0 (or FALSE) if value is not in cstring

1 (or TRUE) if value is in cstring

Returns TRUE if a character is one of the characters in a
constant string.

All devices

Nothing

char x= 'x';

if (isamong (x,
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"))
printf ("The character is valid");

#INCLUDE <ctype.h>
isalnum(), isalpha(), isdigit(), isspace(), islower(), isupper(),

isxdigit()

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

itoa()

Syntax: string = itoa(i32value, i8base, string)
string = itoa(i48value, i8base, string)
string = itoa(i64value, i8base, string)
Parameters: i32value is a 32 bit int
i48value is a 48 bit int
i64value is a 64 bit int
i8base is a 8 bit int
string is a pointer to a null terminated string of characters
Returns: string is a pointer to a null terminated string of characters
Function: Converts the signed int32 , int48, or a int64 to a string according to the
provided base and returns the converted value if any. If the result cannot be
represented, the function will return O.

Availability: All devices
Requires: #INCLUDE <stdlib.h>
Examples: int32 x=1234;

char stringl[5];

itoa(x,10, string);
// string is now “1234”

Example Files: None

Also See: None

kbhit()

Syntax: value = kbhit()
value = kbhit (stream)

Parameters: stream is the stream id assigned to an available RS232 port. If the stream
parameter is not included, the function uses the primary stream used by getc().

Returns: 0 (or FALSE) if getc() will need to wait for a character to come in, 1 (or TRUE) if
a character is ready for getc()

Function: If the RS232 is under software control this function returns TRUE if the start bit
of a character is being sent on the RS232 RCV pin. If the RS232 is hardware
this function returns TRUE if a character has been received and is waiting in the
hardware buffer for getc() to read. This function may be used to poll for data
without stopping and waiting for the data to appear. Note that in the case of
software RS232 this function should be called at least 10 times the bit rate to
ensure incoming data is not lost.

Availability: All devices.
197

TEST PCD

Requires: #USE RS232

Examples: char timed getc() {
long timeout;

timeout error=FALSE;
timeout=0;
while (!kbhit () && (++timeout<50000)) // 1/2
// second
delay us(10);
if (kbhit())
return (getc());
else {
timeout error=TRUE;
return (0) ;

}

Example ex_tgetc.c
Files:
Also See: getc(), #USE RS232, RS232 |/O Overview

label address()

Syntax: value = label_address(label);
Parameters: label is a C label anywhere in the function
Returns: A 16 bit int in PCB,PCM and a 32 bit int for PCH
Function: This function obtains the address in ROM of the next instruction after the
label. This is not a normally used function except in very special situations.
Availability: All devices.
Requires: Nothing
Examples: start:
a = (b+c)<<2;
end:

printf ("It takes %lu ROM locations.\r\n",
label address(end)-label address(start));

Example Files: setimp.h
Also See: goto_address()

198

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

labs()

Syntax:
Parameters:
Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

ldexp()

Syntax:

Parameters:
Returns:

Function:
Availability:
Requires:

Examples:

Example
Files:
Also See:

Standard C Include Files

result = labs (value)

value is a 16, 32, 48 or 64 bit signed long int
A signed long int of type value

Computes the absolute value of a long integer.
All devices.

#INCLUDE <stdlib.h>

if (labs(target value - actual value) > 500)
printf ("Error is over 500 points\r\n");

None

abs()

result= Idexp (value, exp);

value is float any float type
exp is a signed int.

result is a float with value result times 2 raised to power exp.
result will have a precision equal to value

The Idexp function multiplies a floating-point number by an integral power of 2.
All devices.
#INCLUDE <math.h>

float result;
result=ldexp(.5,0);
// result is .5

None

frexp(), exp(), log(), log10(), modf()

199

TEST PCD

log()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

log10()

Syntax:
Parameters:
Returns:

Function:

200

result = log (value)
value is any float type
A float with precision equal to value

Computes the natural logarithm of the float x. If the argument is less than or
equal to zero or too large, the behavior is undefined.

Note on error handling:

"errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Domain error occurs in the following cases:
e |og: when the argument is negative

All devices
#INCLUDE <math.h>
Inx = log(x);

None

10910(), exp(), pow()

result = log10 (value)
value is any float type
A float with precision equal to value

Computes the base-ten logarithm of the float x. If the argument is
less than or equal to zero or too large, the behavior is undefined.

Note on error handling:

Availability:
Requires:

Examples:

Example
Files:

Also See:

Standard C Include Files

If "errno.h" is included then the domain and range errors are stored
in the errno variable. The user can check the errno to see if an error
has occurred and print the error using the perror function.

Domain error occurs in the following cases:
¢ |0g10: when the argument is negative

All devices
#INCLUDE <math.h>

db = loglO(read adc()*(5.0/255))*10;
None

log(), exp(), pow()

longjmp()

Syntax:

Parameters:

Returns:

Function:
Availability:
Requires:
Examples:

Example
Files:

Also See:

make8()

Syntax:

Parameters:

Returns:

longjmp (env, val)

env: The data object that will be restored by this function
val: The value that the function setjmp will return. If val is O then the function
setjmp will return 1 instead.

After longjmp is completed, program execution continues as if the corresponding
invocation of the setjmp function had just returned the value specified by val.

Performs the non-local transfer of control.
All devices

#INCLUDE <setjmp.h>

longjmp (jmpbuf, 1);

None

setimp()

i8 = MAKES8(var, offset)

var is a 16 or 32 bit integer.
offset is a byte offset of 0,1,2 or 3.

An 8 bit integer
201

TEST PCD

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

Extracts the byte at offset from var. Same as: i8 = (((var >>
(offset*8)) & 0xff) except it is done with a single byte move.

All devices
Nothing

int32 x;
int vy;

y = make8(x,3); // Gets MSB of x
None

makel6(), make32()

makel6()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

202

i16 = MAKE16(varhigh, varlow)
varhigh and varlow are 8 bit integers.
A 16 bit integer

Makes a 16 bit number out of two 8 bit numbers. If either parameter is 16 or 32
bits only the Isb is used. Same as: i16 =
(int16)(varhigh&O0xff)*0x100+(varlow&0xff) except it is done with two byte moves.
All devices

Nothing

long x;
int hi,lo;

x = makel6 (hi,lo);
[tc1298.c

make8(), make32()

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

make32()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

malloc()

Syntax:
Parameters:
Returns:

Function:

Availability:

i32 = MAKE32(varl, var2, var3, var4)
varl-4 are a 8 or 16 bit integers. var2-4 are optional.
A 32 bit integer

Makes a 32 bit number out of any combination of 8 and 16 bit numbers. Note
that the number of parameters may be 1 to 4. The msb is first. If the total bits
provided is less than 32 then zeros are added at the msb.

All devices
Nothing

int32 x;

int vy;

long z;

x = make32(1,2,3,4); // x is 0x01020304

y=0x12;
z=0x4321;

make32(y,z); // x is 0x00124321

X

x = make32(y,y,z); // x is 0x12124321

ex_freqc.c

make8(), makel6()

ptr=malloc(size)
size is an integer representing the number of byes to be allocated.
A pointer to the allocated memory, if any. Returns null otherwise.

The malloc function allocates space for an object whose size is specified by
size and whose value is indeterminate.

All devices
203

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Requires:

Examples:

Example
Files:

Also See:

#INCLUDE <stdlibm.h>

int * iptr;

iptr=malloc(10);

// iptr will point to a block of memory of 10 bytes.

None

realloc(), free(), calloc()

memcpy() memmove()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:
204

memcpy (destination, source, n)
memmove(destination, source, n)

destination is a pointer to the destination memory, source is a
pointer to the source memory, n is the number of bytes to transfer

undefined

Copies n bytes from source to destination in RAM. Be aware that
array names are pointers where other variable names and
structure names are not (and therefore need a & before them).

Memmove performs a safe copy (overlapping objects doesn't
cause a problem). Copying takes place as if the n characters from
the source are first copied into a temporary array of n characters
that doesn't overlap the destination and source objects. Then the n
characters from the temporary array are copied to destination.

All devices
Nothing

memcpy (&structhA, &structB, sizeof (structd)):;
memcpy (arrayA,arrayB,sizeof (arrayd));
memcpy (&structA, &databyte, 1);

char a[20]="hello";
memmove (a,a+2,5) ;
// a is now "11o"MEMMOVE ()

None
strcpy(), memset()

Standard C Include Files

memset()

Syntax: memset (destination, value, n)

Parameters: destination is a pointer to memory, value is a 8 bit int, n is a 16 bit int.

Returns: undefined

Function: Sets n number of bytes, starting at destination, to value. Be aware that array
names are pointers where other variable names and structure names are not
(and therefore need a & before them).

Availability: All devices

Requires: Nothing

Exanuﬂes: memset (arrayA, 0, sizeof(arrayh));
memset (arrayB, '?', sizeof (arrayB));
memset (&structA, O0xFF, sizeof (structA));

Example None

Files:

Also See: memcpy()

modf()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

result= modf (value, & integral)

value is any float type

integral is any float type

result is a float with precision equal to value

The modf function breaks the argument value into integral and fractional parts,
each of which has the same sign as the argument. It stores the integral part as
a float in the object integral.

All devices

#INCLUDE <math.h>

float 48 result, integral;

result=modf (123.987, &integral) ;

// result is .987 and integral is 123.0000

None

None

205

TEST PCD

_mul()
Syntax: prod=_mul(vall, val2);
Parameters: vall and val2 are both 8-bit, 16-bit, or 48-bit integers
Returns:
vall val2 prod
8 8 16
16* 16 32
32* 32 64
48* 48 64**
*or less
** large numbers will overflow with wrong results
Function: Performs an optimized multiplication. By accepting a different type
than it returns, this function avoids the overhead of converting the
parameters to a larger type.
Availability: All devices
Requires: Nothing
Examples: int a=50, b=100;
long int c;
¢ = mul(a, b); //c holds 5000
Example None
Files:
Also See: None
nargs()
Syntax: Void foo(char * str, int count, ...)
Parameters: The function can take variable parameters. The user can use stdarg library to
create functions that take variable parameters.
Returns: Function dependent.
Function: The stdarg library allows the user to create functions that supports variable

arguments.

206

Standard C Include Files

The function that will accept a variable number of arguments must have at least
one actual, known parameters, and it may have more. The number of
arguments is often passed to the function in one of its actual parameters. If the
variable-length argument list can involve more that one type, the type
information is generally passed as well. Before processing can begin, the
function creates a special argument pointer of type va_list.

Availability: All devices
Requires: #INCLUDE <stdarg.h>
Examples: int foo(int num, ...)
int sum = 0;
int 1i;

va_ list argptr; // create special argument pointer
va start (argptr,num); // initialize argptr
for (i=0; i<num; 1i++)

sum = sum + va_arg(argptr, int);
va_end(argptr); // end variable processing
return sum;
}
void main ()
{
int total;
total = foo(2,4,6,9,10,2);
}

Example None
Files:
Also See: va_start(), va_end(), va_arg()

offsetof() offsetofbit()

Syntax: value = offsetof(stype, field);
value = offsetofhit(stype, field);

Parameters: stype is a structure type name.
Field is a field from the above structure

Returns: An 8 bit byte

Function: These functions return an offset into a structure for the indicated field.
offsetof returns the offset in bytes and offsetofbit returns the offset in bits.

Availability: All devices

207

TEST PCD

Requires: #INCLUDE <stddef.h>

Examples: struct time structure ({
int hour, min, sec;
int zone : 4;

intl daylight savings;

x = offsetof (time structure, sec);
// x will be 2

x = offsetofbit(time structure, sec);
// x will be 16

x = offsetof (time structure,

daylight savings);
// x will be 3
x = offsetofbit (time structure,
daylight savings);
// x will be 28

Example Files: None

Also See: None
output_x()

Syntax: output_a (value)

output_b (value)
output_c (value)
output_d (value)
output_e (value)
output_f (value)

output_g (value)
output_h (value)
output_j (value)

output_k (value)

Parameters: value is a 16 bit int

Returns: Undefined

Function: Output an entire word to a port. The direction register is changed in accordance
with the last specified #USE *_IO directive.

Availability: All devices, however not all devices have all ports (A-E)

Requires: Nothing

Examples: OUTPUT B (0x£f0) ;

Example Files: ex_patg.c

Also See: input(), output low(), output high(), output_float(), output_bit(), #USE FIXED_10,

#USE FAST |0, #USE STANDARD |0, General Purpose 1/0

208

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

output_bit()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

output_bit (pin, value)

Pins are defined in the devices .h file. The actual number is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651
. This is defined as follows: #define PIN_A3 5651 . The PIN could also be a
variable. The variable must have a value equal to one of the constants (like
PIN_A1) to work properly. The tristate register is updated unless the FAST_I0
mode is set on port A. Note that doing I/0 with a variable instead of a constant
will take much longer time. Value isa 1 or a 0.

undefined

Outputs the specified value (0 or 1) to the specified I/O pin. The
method of setting the direction register is determined by the last #USE
* 10 directive.

All devices.
Pin constants are defined in the devices .h file

output bit (PIN BO, 0);
// Same as output low(pin BO);

output bit(PIN BO,input(PIN Bl));
// Make pin BO the same as Bl

output bit(PIN BO,
shift left (&data,l,input (PIN Bl)));
// Output the MSB of data to
// BO and at the same time
// shift Bl into the LSB of data

intlé i=PIN BO;

ouput bit(i,shift left (&data,l,input (PIN Bl)));
//same as above example, but

//uses a variable instead of a constant

ex_extee.c with 9356.c

input(), output _low(), output_high(), output float(), output_x(), #USE FIXED 10,
#USE FAST 10, #USE STANDARD |0, General Purpose 1/0

209

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()

TEST PCD

output_drive()

Syntax:
Parameters:

Returns:
Function:
Availability:
Requires:
Examples:

Example
Files:
Also See:

output_drive(pin)

Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651
. This is defined as follows: #DEFINE PIN_A3 5651 .

undefined

Sets the specified pin to the output mode.

All devices.

Pin constants are defined in the devices.h file.

output_drive (pin AQ0); // sets pin A0 to output its value
output bit(pin B0, input(pin A0)) // makes BO the same as A0
None

input(), output_low(), output_high(), output bit(), output x(), output_float()

output_float()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

210

output_float (pin)
Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651 .
This is defined as follows: #DEFINE PIN_A3 5651 . The PIN could also be a
variable to identify the pin. The variable must have a value equal to one of the
constants (like PIN_A1) to work properly. Note that doing I/0 with a variable
instead of a constant will take much longer time.
undefined
Sets the specified pin to the input mode. This will allow the pin to float high to
represent a high on an open collector type of connection.
All devices.
Pin constants are defined in the devices .h file
if((data & 0x80)==0)

output low(pin_ AO0);
else

output float (pin_ A0);
None

input(), output_low(), output high(), output_bit(), output x(), output_drive(), #USE
FIXED |0, #USE FAST 10, #USE STANDARD 10, General Purpose I/0O

Standard C Include Files

output_high()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

output_high (pin)

Pin to write to. Pins are defined in the devices .h file. The actual value is a
bit address. For example, port a (byte 0x2C2) bit 3 would have a value of
0x2C2*8+3 or 5651 . This is defined as follows: #DEFINE PIN_A3 5651 .
The PIN could also be a variable. The variable must have a value equal to
one of the constants (like PIN_A1) to work properly. The tristate register is
updated unless the FAST_I0 mode is set on port A. Note that doing 1/0
with a variable instead of a constant will take much longer time.

undefined

Sets a given pin to the high state. The method of I/0O used is dependent on
the last USE *_|O directive.

All devices.

Pin constants are defined in the devices .h file

output high(PIN A0);

output low (PIN Al);

ex_sqw.c

input(), output low(), output float(), output_bit(), output x(), #USE

FIXED IO, #USE FAST IO, #USE STANDARD_IO, General Purpose I/0

output_low()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

output_low (pin)

Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651
. This is defined as follows: #DEFINE PIN_A3 5651 . The PIN could also be a
variable. The variable must have a value equal to one of the constants (like
PIN_A1) to work properly. The tristate register is updated unless the FAST_I0
mode is set on port A. Note that doing I/0 with a variable instead of a constant
will take much longer time.

undefined

Sets a given pin to the ground state. The method of I/0 used is dependent on
the last USE *_|O directive.

All devices.

Pin constants are defined in the devices .h file

output low (PIN AQ);

Intl6i=PIN Al;

output low (PIN_Al);

ex_Sgw.c

input(), output_high(), output_float(), output_bit(), output x(), #USE
FIXED 10, #USE FAST 10, #USE STANDARD 10, General Purpose I/O

211

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

output_toggle()

Syntax:
Parameters:

Returns:
Function:
Availability:
Requires:
Examples:
Example Files:
Also See:

perror()

Syntax:
Parameters:
Returns:
Function:

Availability:
Requires:
Examples:

Example Files:
Also See:

output_toggle(pin)

Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 0x2C2) bit 3 would have a value of 0x2C2*8+3 or 5651
. This is defined as follows: #DEFINE PIN_A3 5651.

Undefined

Toggles the high/low state of the specified pin.

All devices.

Pin constants are defined in the devices .h file

output toggle (PIN B4);

None

Input(), output_high(), output_low(), output_bit(), output_x()

perror(string);

string is a constant string or array of characters (null terminated).

Nothing

This function prints out to STDERR the supplied string and a description of the
last system error (usually a math error).

All devices.

#USE RS232, #INCLUDE <errno.h>

x = sin(y);

if (errno!=0)

perror ("Problem in find area");
None
RS232 1/0 Overview

pmp_address(address)

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
212

pmp_address (address);

address- The address which is a 16 bit destination address value. This will
setup the address register on the PMP module and is only used in Master
mode.

undefined

Configures the address register of the PMP module with the destination
address during Master mode operation. The address can be either 14, 15 or
16 bits based on the multiplexing used for the Chip Select Lines 1 and 2.
Only the devices with a built in Parallel Port module.

Nothing.

Standard C Include Files

Examples: pmp_address(0x2100); // Sets up Address register to 0x2100
Example Files: None
Also See: setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),

pmp_write(), psp_output full(), psp_input_full(), psp_overflow(),
pmp_output_full(), pmp_input_full(),pmp_overflow().
See header file for device selected.

pmp_output_full()
pmp_input_full()
pmp_overflow()
pmp_error()
pmp_timeout()

Syntax: result = pmp_output_full() //PMP only
result = pmp_input_full() /IPMP only
result = pmp_overflow() /IPMP only
result = pmp_eror() /[EPMP only
result = pmp_timeout() /[EPMP only
Parameters: None
Returns: A 0 (FALSE) or 1 (TRUE)
Function: These functions check the Parallel Port for the indicated conditions and return
TRUE or FALSE.
Availability: This function is only available on devices with Parallel Port hardware on chips.
Requires: Nothing.
Examples: while (pmp_output_full()) ;
pmp data = command;
while (!pmp input full()) ;

if (pmp overflow())
error = TRUE;

else
data = pmp data;

Example None
Files:
Also See: setup_pmp(), pmp_write(), pmp_read()

213

TEST PCD

pmp_read()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Example
Files:
Also See:

214

result = pmp_read (); /[Parallel Master Port
result = pmp_read8(address); /[Enhanced Parallel Master Port
result = pmp_read16(address); /[Enhanced Parallel Master Port

pmp_read8(address,pointer,count); //Enhanced Parallel Master Port
pmp_readl6(address,pointer,count); //Enhanced Parallel Master Port

address- EPMP only, address in EDS memory that is mapped to address from parallel
port device to read data from or start reading data from. (All address in EDS memory are
word aligned)

pointer- EPMP only, pointer to array to read data to.

count- EPMP only, number of bytes to read. For pmp_read16() number of bytes must
be even.

For pmp_read(), pmp_read8(address) or pmp_read16() an 8 or 16 bit value. For
pmp_read8(address,pointer,count) and pmp_read16(address,pointer,count) undefined.

For PMP module, this will read a byte from the next buffer location. For EPMP module,
reads one byte/word or count bytes of data from the address mapped to the EDS
memory location. The address is used in conjunction with the offset address set with the
setup_pmp_csl1() and setup_pmp_cs2() functions to determine which address lines are
high or low during the read.

Only the devices with a built in Parallel Master Port module or an Enhanced Parallel
Master Port module.

Nothing.
result = pmp read(); //PMP reads next byte of data
result = pmp read8(0x8000) ; //EPMP reads byte of data from the

address mapped

//to first address in EDS memory.
pmp readl6 (0x8002,ptr,16); //EPMP reads 16 bytes of data and
returns to array

//pointed to by ptr starting at
address mapped

//to address 0x8002 in EDS memory.

None

setup_pmp(), setup_pmp_csx(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output full(), psp_input_full(), psp_overflow(), pmp_output_full(),
pmp_input_full(),pmp_overflow() pmp_error(), pmp_timeout(), psp_error(),
psp_timeout()

Standard C Include Files

pmp_write()

Syntax: pmp_write (data); /[Parallel Master Port
pmp_write8(address,data); /IEnhanced Parallel Master Port
pmp_write8(address,pointer,data); //Enhanced Parallel Master Port
pmp_writel6(address,data); //Enhanced Parallel Master Port
pmp_writel6(address,pointer,data); //Enhanced Parallel Master Port

Parameters: data- The byte of data to be written.

Returns:

Function:

Availability:

Requires:
Examples:

Example
Files:

Also See:

address- EPMP only, address in EDS memory that is mapped to address from
parallel port device to write data to or start writing data to. (All addresses in EDS
memory are word aligned)

pointer- EPMP only, pointer to data to be written

count- EPMP only, number of bytes to write. For pmp_write16() number of bytes
must be even.

Undefined.

For PMP modules, this will write a byte of data to the next buffer location. For
EPMP modules writes one byte/word or count bytes of data from the address
mapped to the EDS memory location. The address is used in conjunction with the
offset address set with the setup_pmp_cs1() and setup_pmp_cs2() functions to
determine which address lines are high or low during write.

Only the devices with a built in Parallel Master Port module or Enhanced Parallel
Master Port modules.

Nothing.

pmp write(data); //Write the data byte to the next
buffer location.

pmp write8(0x8000,data); //EPMP writes the data byte to the

address mapped to

//the first location in EDS memory.
pmp writel6(0x8002,ptr,16); //EPMP writes 16 bytes of data
pointed to by ptr

//starting at address mapped to
address 0x8002 in

//EDS Memory

None

setup_pmp(), setup_pmp_csx(), pmp_address(), pmp_read(), psp_read(),
psp_write(), pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output full(), pmp_input_full(), pmp_overflow(), pmp_error(), pmp_timeout(),
psp_error(), psp_timeout()

215

TEST PCD

port_x_pullups ()

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:
Example

Files:
Also See:

port_a_pullups (value)

port_b_pullups (value)

port_d_pullups (value)

port_e_pullups (value)

port_j_pullups (value)

port_x_pullups (upmask)
port_x_pullups (upmask, downmask)

value is TRUE or FALSE on most parts, some parts that allow pullups to be
specified on individual pins permit an 8 bit int here, one bit for each port pin.
upmask for ports that permit pullups to be specified on a pin basis. This mask
indicates what pins should have pullups activated. A 1 indicates the pullups is
on.

downmask for ports that permit pulldowns to be specified on a pin basis. This
mask indicates what pins should have pulldowns activated. A 1 indicates the
pulldowns is on.

undefined

Sets the input pullups. TRUE will activate, and a FALSE will deactivate.

Only 14 and 16 bit devices (PCM and PCH). (Note: use SETUP_COUNTERS
on PCB parts).

Nothing
port a pullups (FALSE) ;
ex_lcdkb.c, kbd.c

input(), input_x(), output_float()

pow() pwr()

Syntax:

Parameters:
Returns:
Function:

216

f=pow (x.y)

f=pwr (x,y)

x and y are any float type

A float with precision equal to function parameters x and y.
Calculates X to the Y power.

Note on error handling:
If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()

Availability:
Requires:
Examples:
Example
Files:

Also See:

Standard C Include Files

the error using the perror function.

Range error occurs in the following case:
e pow: when the argument X is negative
All Devices

#INCLUDE <math.h>

area = pow (size,3.0);

None

None

printf() fprintf()

Syntax:

Parameters:

Returns:

Function:

printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

String is a constant string or an array of characters null terminated. Values is a
list of variables separated by commas, fname is a function name to be used for
outputting (default is putc is none is specified. Stream is a stream identifier (a
constant byte). Note that format specifies do not work in ram band strings.

undefined

Outputs a string of characters to either the standard RS-232 pins (first two forms)
or to a specified function. Formatting is in accordance with the string

argument. When variables are used this string must be a constant. The %
character is used within the string to indicate a variable value is to be formatted
and output. Longs in the printf may be 16 or 32 bit. A %% will output a single

%. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual for other
escape character that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults to
STDOUT (the last USE RS232).

Format:

The format takes the generic form %nt. n is optional and may be 1-9 to specify
how many characters are to be outputted, or 01-09 to indicate leading zeros, or
1.1 to 9.9 for floating point and %w output. t is the type and may be one of the
following:

217

TEST PCD

Availability:
Requires:
Examples:

Example
Files:
Also See:

218

c Character

s String or character

u Unsigned int

d Signed int

Lu Long unsigned int

Ld Long signed int

X Hex int (lower case)

X Hex int (upper case)

Lx Hex long int (lower case)
LX Hex long int (upper case)

f Float with truncated decimal
g Float with rounded decimal

e Float in exponential format
w

Unsigned int with decimal place inserted. Specify two numbers for
n. The first is a total field width. The second is the desired number
of decimal places.

Example formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254
%u 18 254
%2u 18 :
%5 18 254
%d 18 -2
%X 12 fe
%X 12 FE
%4X 0012 O0OFE
%3.1w 1.8 25.4
* Result is undefined - Assume garbage.
All Devices

#USE RS232 (unless fname is used)

byte x,y,z;

printf ("HiThere") ;

printf ("RTCCValue=>%2x\n\r",get rtcc());
printf ("$2u %X %4X\n\r",x,vy,z);

printf (LCD_PUTC, "n=%u",n);

ex_admm.c, ex_lcdkb.c

atoi(), puts(), putc(), getc() (for a stream example), RS232 1/0 Overview

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()

Standard C Include Files

psp_output_full()
psp_input_full()
psp_overflow()
psp_error() psp_timeout(

)

Syntax: result = psp_output_full()
result = psp_input_full()
result = psp_overflow()

result = psp_error(); /IEPMP only
result = psp_timeout(); /[EPMP only
Parameters: None
Returns: A 0 (FALSE) or 1 (TRUE)
Function: These functions check the Parallel Slave Port (PSP) for the indicated conditions
and return TRUE or FALSE.
Availability: This function is only available on devices with PSP hardware on chips.
Requires: Nothing
Examples: while (psp_output full()) ;
psp_data = command;
while (!psp input full()) ;

if (psp_overflow())
error = TRUE;

else
data = psp data;
Example ex_psp.c
Files:
Also See: setup_psp(), PSP Overview

psp_read()

Syntax: Result = psp_read ();
Result = psp_read (address);

Parameters: address- The address of the buffer location that needs to be read. If address is
not specified, use the function psp_read() which will read the next buffer
location.

Returns: A byte of data.

Function: psp_read() will read a byte of data from the next buffer location and psp_read (

address) will read the buffer location address.

219

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Availability:

Requires:

Examples:

Example
Files:
Also See:

Only the devices with a built in Parallel Master Port module of Enhanced
Parallel Master Port module.

Nothing.

Result = psp read(); // Reads next byte of data
Result = psp read(3); // Reads the buffer location 3
None

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),
pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output_full(), pmp_input full(),pmp_overflow().

See header file for device selected.

psp_write()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

220

psp_write (data);
psp_write(address, data);

address-The buffer location that needs to be written to
data- The byte of data to be written

Undefined.

This will write a byte of data to the next buffer location or will write a byte to the
specified buffer location.

Only the devices with a built in Parallel Master Port module or Enhanced Parallel
Master Port module.

Nothing.

psp write(data); // Write the data byte to the next buffer
location.

None

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(),
psp_output_full(), psp_input_full(), psp_overflow(), pmp_output_full(),

pmp_input_full(),pmp_overflow().

See header file for device selected.

Standard C Include Files

putc() putchar() fputc()

Syntax:

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

putc (cdata)

putchar (cdata)

fputc(cdata, stream)

cdata is a 8 bit character. Stream is a stream identifier (a constant byte)
undefined

This function sends a character over the RS232 XMIT pin. A #USE RS232 must
appear before this call to determine the baud rate and pin used. The #USE
RS232 remains in effect until another is encountered in the file.

If fputc() is used then the specified stream is used where putc() defaults to
STDOUT (the last USE RS232).

All devices

#USE RS232

putc ('*");

for (i=0; i<10; i++)

putc (buffer[i]);
putc (13);

ex_tgetc.c

getc(), printf(), #USE RS232, RS232 1/0O Overview

puts() fputs()

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:

puts (string).

fputs (string, stream)

string is a constant string or a character array (null-terminated). Stream is a
stream identifier (a constant byte)

undefined

Sends each character in the string out the RS232 pin using putc(). After the
string is sent a RETURN (13) and LINE-FEED (10) are sent. In general printf()
is more useful than puts().

If fputs() is used then the specified stream is used where puts() defaults to
STDOUT (the last USE RS232)

All devices
#USE RS232

221

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Examples:

Example
Files:
Also See:

printf(), gets(), RS232 1/O Overview

gei_get _count()

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:
Examples:
Example Files:

Also See:

value = gei_get_count([unit]);

value- The 16-hit value of the position counter.
unit- Optional unit number, defaults to 1.

void

Reads the current 16-bit value of the position counter.
Devices that have the QEI module.

Nothing.

value = gei get counter();

None

setup_qei() , gei_set _count() , gei_status().

gei_set_count()

Syntax:
Parameters:

Returns:
Function:
Availability:
Requires:
Examples:
Example Files:
Also See:

222

gei_set_count([unit,] value);

value- The 16-bit value of the position counter.
unit- Optional unit number, defaults to 1.

void

Write a 16-bit value to the position counter.
Devices that have the QEI module.
Nothing.

gei set counter (value);

None

setup_qgei() , gei_get count() , gei_status().

Standard C Include Files

gei_status()

Syntax:
Parameters:

Returns:
Function:
Availability:
Requires:
Examples:

Example Files:

Also See:

gsort()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:

Also See:

status = gei_status([unit]);

status- The status of the QEI module
unit- Optional unit number, defaults to 1.

void

Returns the status of the QUI module.

Devices that have the QEI module.

Nothing.

status = gei status();

None

setup _qei() , gei_set count() , gei_get count().

gsort (base, num, width, compare)

base: Pointer to array of sort data

num: Number of elements

width: Width of elements

compare: Function that compares two elements

None

Performs the shell-metzner sort (not the quick sort algorithm). The contents of
the array are sorted into ascending order according to a comparison function
pointed to by compare.

All devices

#INCLUDE <stdlib.h>

int nums([5]={ 2,3,1,5,4};

int compar (void *argl,void *arg2);

void main () {
gsort (nums, 5, sizeof (int), compar);
}
int compar (void *argl,void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return O

else return 1;

}
ex_gsort.c

bsearch()

223

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

rand()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

read adc()read_adc?2()

value = read_adc ([mode])
value = read_adc2 ([mode])

Syntax:

Parameters:

Returns:

Function:

224

re=rand()

None

A pseudo-random integer.

The rand function returns a sequence of pseudo-random integers in the range

of 0 to RAND_MAX.

All devices

#INCLUDE <STDLIB.H>

int I;
I=rand () ;

None

srand()

mode is an optional parameter. If used the values may be:
ADC_START_AND_READ (continually takes readings, this is the default)
ADC_START_ONLY (starts the conversion and returns)

ADC_READ_ONLY (reads last conversion result)

Either a 8 or 16 bit int depending on #DEVICE ADC-= directive.

This function will read the digital value from the analog to digital converter. Calls
to setup_adc(), setup_adc_ports() and set_adc_channel() should be made
sometime before this function is called. The range of the return value depends
on number of bits in the chips A/D converter and the setting in the #DEVICE

ADC= directive as follows:

#DEVICE

ADC=8

ADC=10
ADC=11
ADC=12

10 bit
00-FF
0-3FF
X

0-FFC

12 bit

00-FF

0-3FF
X
0-FFF

Availability:
Requires:
Examples:

Example
Files:

Standard C Include Files

ADC=16 0-FFCO 0-FFFO

Note: xis not defined

Only available on devices with built in analog to digital converters.
Pin constants are defined in the devices .h file.

intle value;

setup_adc ports (sANO|sAN1l, VSS VDD);

setup_adc (ADC_CLOCK DIV 4|ADC TAD MUL 8);

while (TRUE)
{
set _adc channel (0);
value = read adc();
printf (“Pin ANO A/C value = $LX\n\r”, value);

delay ms(5000);

set adc channel (1);
read adc (ADC START ONLY) ;

value = read adc (ADC READ ONLY);
printf ("Pin AN1 A/D value = $LX\n\r", value);
}

ex_admm.c,

read_configuration_memory()

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

read_configuration_memory(ramPtr, n)

ramPtr is the destination pointer for the read results
count is an 8 bit integer

undefined

Reads n bytes of configuration memory and saves the values to ramPtr.
All

Nothing

int datal6];
read configuration memory (data, 6);

None

write _configuration _memory(), read _program_memory(), Configuration
Memory Overview

225

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

read _eeprom()

Syntax:

Parameters:

Returns:
Function:

Auvailability:
Requires:
Examples:

Example
Files:
Also See:

value = read_eeprom (address , [N])

read_eeprom(address , variable)

read_eeprom(address , pointer , N)
address is an (8 bit or 16 bit depending on the part) int
N specifies the number of EEPROM bytes to read
variable a specified location to store EEPROM read results
pointer is a pointer to location to store EEPROM read results
An 16 bit int
By default the function reads a word from EEPROM at the specified address.
The number of bytes to read can optionally be defined by argument N. If a
variable is used as an argument, then EEPROM is read and the results are
placed in the variable until the variable data size is full. Finally, if a pointer is
used as an argument, then n bytes of EEPROM at the given address are read
to the pointer.
This command is only for parts with built-in EEPROMS

Nothing
#define LAST VOLUME 10
volume = read EEPROM (LAST VOLUME) ;

None

write_eeprom(), Data Eeprom Overview

read _extended ram()

Syntax:
Parameters:

Returns:
Function:
Availability:
Requires:
Examples:

Example Files:

Also See:

226

read_extended_ram(page,address,data,count);

page - the page in extended RAM to read from

address — the address on the selected page to start reading from
data — pointer to the variable to return the data to

count — the number of bytes to read (0-32768)

Undefined

To read data from the extended RAM of the PIC.

On devices with more then 30K of RAM.

Nothing

unsigned int8 datal[8];
read extended ram(1l,0x0000,data,8);

None
read_extended ram(), Extended RAM Overview

Standard C Include Files

read _high _speed adc()

Syntax: read_high_speed_adc(pair,mode,result); // Individual start and read or
Il read only
read_high_speed_adc(pair,result); /I Individual start and read
read_high_speed_adc(pair); I Individual start only
read_high_speed_adc(mode,result); /I Global start and read or
/l read only
read_high_speed_adc(result); /I Global start and read
read_high_speed_adc(); I/l Global start only
Parameters: pair — Optional parameter that determines which ADC pair number to

start and/or read. Valid values are 0 to total number of ADC pairs. 0
starts and/or reads ADC pair ANO and AN1, 1 starts and/or reads ADC
pair AN2 and AN3, etc. If omitted then a global start and/or read will be
performed.

mode — Optional parameter, if used the values may be:
- ADC_START_AND_READ (starts conversion and reads result)
- ADC_START_ONLY (starts conversion and returns)
- ADC_READ_ONLY/(reads conversion result)

result — Pointer to return ADC conversion too. Parameter is optional, if
not used the read_fast_adc() function can only perform a start.

Returns: Undefined

Function: This function is used to start an analog to digital conversion and/or read
the digital value when the conversion is complete. Calls to
setup_high_speed_adc() and setup_high_speed_adc_pairs() should be
made sometime before this function is called.

When using this function to perform an individual start and read or
individual start only, the function assumes that the pair's trigger source
was set to INDIVIDUAL_SOFTWARE_TRIGGER.

When using this function to perform a global start and read, global start
only, or global read only. The function will perform the following steps:

1. Determine which ADC pairs are set for
GLOBAL_SOFTWARE_TRIGGER.

2. Clear the corresponding ready flags (if doing a start).
3. Set the global software trigger (if doing a start).

4. Read the corresponding ADC pairs in order from
lowest to highest (if doing a read).

5. Clear the corresponding ready flags (if doing a read).

When using this function to perform a individual read only. The function
can read the ADC result from any trigger source.
Availability: Only on devices with a built-in high-speed analog to digital converter.

227

TEST PCD

Requires: Constants are define in the device .h file.

Examples: //Individual start and read
intl6 result[2];

setup high speed adc (ADC CLOCK DIV 4);
setup high speed adc pair (0,
INDIVIDUAL SOFTWARE TRIGGER) ;
read high speed adc (0, result); //starts conversion for
ANO and ANl and stores
//result in result[0] and
result[1l]

//Global start and read
intl6 result([4];

setup high speed adc (ADC CLOCK DIV 4);
setup_high speed adc pair (0, GLOBAL SOFTWARE TRIGGER);
setup_high speed adc pair (4, GLOBAL SOFTWARE TRIGGER);
read_high_speed adc(result); //starts conversion for
ANO, AN1, AN8 and AN9 and

//stores result in result[0],
result[1l], result[2] and

//result[3]
Example Files: None
Also See: setup_high_speed_adc(), setup high speed adc pair(),
high_speed adc_done()
read _program_memory()
Syntax: READ_PROGRAM_MEMORY (address, dataptr, count);
Parameters: address is 32 bits . The least significant bit should always be 0 in PCM.

dataptr is a pointer to one or more bytes.
count is a 16 bit integer on PIC16 and 16-bit for PIC18

Returns: undefined

Function: Reads count bytes from program memory at address to RAM at dataptr.
BDue to the 24 bit program instruction size on the PCD devices, every fourth
byte will be read as 0x00

Availability: Only devices that allow reads from program memory.
Requires: Nothing
Examples: char buffer([64];

read external memory(0x40000, buffer, 64);
Example None
Files:
Also See: write program memory(), Program Eeprom Overview

228

Standard C Include Files

read_rom_memory()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

READ_ROM_MEMORY (address, dataptr, count);

address is 32 bits. The least significant bit should always be 0.

dataptr is a pointer to one or more bytes.

count is a 16 bit integer

undefined

Reads count bytes from program memory at address to dataptr. Due to the
24 bit program instruction size on the PCD devices, three bytes are read from
each address location.

Only devices that allow reads from program memory.

Nothing

char buffer([64];
read program memory (0x40000, buffer, 64);

None

Also See: write_eeprom(), read_eeprom(), Program eeprom overview

realloc()

Syntax: realloc (ptr, size)

Parameters: ptr is a null pointer or a pointer previously returned by calloc or malloc or realloc
function, size is an integer representing the number of byes to be allocated.

Returns: A pointer to the possibly moved allocated memory, if any. Returns null
otherwise.

Function: The realloc function changes the size of the object pointed to by the ptr to the

size specified by the size. The contents of the object shall be unchanged up to
the lesser of new and old sizes. If the new size is larger, the value of the newly
allocated space is indeterminate. If ptr is a null pointer, the realloc function
behaves like malloc function for the specified size. If the ptr does not match a
pointer earlier returned by the calloc, malloc or realloc, or if the space has been
deallocated by a call to free or realloc function, the behavior is undefined. If the
space cannot be allocated, the object pointed to by ptr is unchanged. If size is
zero and the ptr is not a null pointer, the object is to be freed.

229

TEST PCD

Availability: All devices
Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;
iptr=malloc (10);
realloc (iptr, 20)

// iptr will point to a block of memory of 20 bytes, if

available.
Example None
Files:
Also See: malloc(), free(), calloc()

reset_cpu()

Syntax: reset_cpu()
Parameters: None
Returns: This function never returns

Function: This is a general purpose device reset. It will jump to location 0 on PCB and
PCM parts and also reset the registers to power-up state on the PIC18XXX.

Availability: All devices
Requires: Nothing

Examples: if (checksum!=0)
reset cpu();

Example None
Files:
Also See: None

restart_cause()

Syntax: value = restart_cause()

Parameters: None

230

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

Standard C Include Files

A value indicating the cause of the last processor reset. The actual values are
device dependent. See the device .h file for specific values for a specific device.
Some example values are: RESTART_POWER_UP, RESTART_BROWNOUT,
RESTART_WDT and RESTART_MCLR

Returns the cause of the last processor reset.

In order for the result to be accurate, it should be called immediately in main().
All devices

Constants are defined in the devices .h file.

switch (restart cause()) {

case RESTART BROWNOUT:
case RESTART WDT:
case RESTART MCLR:
handle error();

}

ex_wdt.c

restart_ wdt(), reset _cpu()

restart_wdt()

Syntax:
Parameters:
Returns:

Function:

restart_wdt()
None
undefined

Restarts the watchdog timer. If the watchdog timer is enabled, this must be called
periodically to prevent the processor from resetting.

The watchdog timer is used to cause a hardware reset if the software appears to
be stuck.

The timer must be enabled, the timeout time set and software must periodically
restart the timer. These are done differently on the PCB/PCM and PCH parts as
follows:

PCB/PCM PCH
Enable/Disable #fuses setup_wdt()

231

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Timeout time setup_wdt() #fuses
restart restart_wdt() restart_wdt()

Availability: All devices
Requires: #FUSES

Examples: #fuses WDT // PCB/PCM example
// See setup wdt for a PIC18 example

main () {

setup wdt (WDT_2304MS) ;

while (TRUE) {

restart wdt();

perform activity();

}
}

Example ex_wdt.c
Files:

Also See: #FUSES, setup_wdt(), WDT or Watch Dog Timer Overview

rotate left()

Syntax: rotate_left (address, bytes)

Parameters: address is a pointer to memory, bytes is a count of the number of bytes to work
with.

Returns: undefined

Function: Rotates a bit through an array or structure. The address may be an array

identifier or an address to a byte or structure (such as &data). Bit O of the
lowest BYTE in RAM is considered the LSB.

Availability: All devices
Requires: Nothing
Examples: x = 0x86;

rotate left(&x, 1);
// x is now 0x0d

Example None
Files:
Also See: rotate right(), shift_left(), shift_right()

232

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

rotate_right()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

rotate_right (address, bytes)

address is a pointer to memory, bytes is a count of the number of bytes to
work with.

undefined

Rotates a bit through an array or structure. The address may be an array
identifier or an address to a byte or structure (such as &data). Bit O of the
lowest BYTE in RAM is considered the LSB.

All devices
Nothing

struct {
int cell 1 4;
int cell 2 : 4;
int cell 3 : 4;
int cell 4 : 4; } cells;
rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2);
// cell 1->4, 2->1, 3->2 and 4-> 3

None

rotate left(), shift left(), shift_right()

rtc_alarm_read()

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:

rtc_alarm_read(&datetime);

datetime- A structure that will contain the values to be written to the alarm in
the RTCC module.

Structure used in read and write functions are defined in the device header
file.

void

Reads the date and time from the alarm in the RTCC module to datetime.
Devices that have the RTCC module.

Nothing.

233

TEST PCD

Examples:

Example
Files:

Also See:

rtc_alarm read(&datetime);
None

ric_read(), ric_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(),

setup_rtc()

rtc_alarm_write()

Syntax: rtc_alarm_write(&datetime);
Parameters: datetime- A structure that will contain the values to be written to the alarm in
the RTCC module.
Structure used in read and write functions are defined in the device header file.
Returns: void
Function: Writes the date and time to the alarm in the RTCC module as specified in the
structure time_t.
Availability: Devices that have the RTCC module.
Requires: Nothing.
Examples: rtc_alarm write(&datetime);
Example None
Files:
Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(),
setup_rtc()
rtc_read()
Syntax: rtc_read(&datetime);
Parameters: datetime- A structure that will contain the values returned by the RTCC
module.
Structure used in read and write functions are defined in the device header
file.
Returns: void
Function: Reads the current value of Time and Date from the RTCC module and stores
it in a structure time_t.
Availability: Devices that have the RTCC module.
Requires: Nothing.
Examples: rtc_read(&datetime) ;
Example ex_rtcc.c
Files:
Also See: ric_read(), ric_alarm_read(), ric_alarm_write(), setup_rtc_alarm(), rtc_write(),

234

setup_rtc()

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

rec_write()

Syntax: rtc_write(&datetime);

Parameters: datetime- A structure that will contain the values to be written to the RTCC
module.

Structure used in read and write functions are defined in the device header

file.

Returns: void

Function: Writes the date and time to the RTCC module as specified in the structure
time_t.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc write(&datetime);

Example ex_rtcc.c

Files:

Also See: ric_read() , rtc_alarm_read() , rtc_alarm_write() , setup_rtc_alarm() ,

rtc_write(), setup _rtc()

rtos_await()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_await (expre)

Parameters: expre is a logical expression.

Returns: None

Function: This function can only be used in an RTOS task. This function waits for expre
to be true before continuing execution of the rest of the code of the RTOS task.
This function allows other tasks to execute while the task waits for expre to be

true.
Availability: All devices
Requires: #USE RTOS
Examples: rtos_await(kbhit());
Also See: None

rtos_disable()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.
Syntax: rtos_disable (task)

Parameters: task is the identifier of a function that is being used as an RTOS task.

Returns: None
235

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Function: This function disables a task which causes the task to not execute until enabled
by rtos_enable(). All tasks are enabled by default.

Availability: All devices
Requires: #USE RTOS
Examples: rtos _disable (toggle green)

Also See: rtos enable

rtos_enable()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.
Syntax: rtos_enable (task)

Parameters: task is the identifier of a function that is being used as an RTOS task.
Returns: None

Function: This function enables a task to execute at it's specified rate.
Availability: All devices

Requires: #USE RTOS

Examples: rtos_enable(toggle green);

Also See: rtos disable()

rtos_msg_poll()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.
Syntax: i = rtos_msg_poll()

Parameters: None
Returns: An integer that specifies how many messages are in the queue.

Function: This function can only be used inside an RTOS task. This function returns the
number of messages that are in the queue for the task that the rtos_msg_poll()
function is used in.

Availability: ~ All devices

236

Standard C Include Files

Requires: #USE RTOS
Examples: if (rtos msg poll())
Also See: rtos msg send(), rtos msq read()

rtos_msg_read()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.
Syntax: b = rtos_msg_read()

Parameters: None

Returns: A byte that is a message for the task.

Function: This function can only be used inside an RTOS task. This function reads in the
next (message) of the queue for the task that the rtos_msg_read() function is
used in.

Availability: All devices

Requires: #USE RTOS

Examples: if (rtos _msg poll()) {

b = rtos msg read();

Also See: rtos msg poll(), rtos msg send()

rtos_msg_send()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.
Syntax: rtos_msg_send(task, byte)

Parameters: task is the identifier of a function that is being used as an RTOS task
byte is the byte to send to task as a message.

Returns: None

Function: This function can be used anytime after rtos_run() has been called.
This function sends a byte long message (byte) to the task identified by
task.

237

TEST PCD

Availability: All devices
Requires: #USE RTOS
Examples: if (kbhit ())

{

rtos msg send(echo, getc());
}
Also See: rtos_msg_poll(), rtos_msg_read()

rtos_overrun()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_overrun([task])

Parameters: task is an optional parameter that is the identifier of a function that is being
used as an RTOS task

Returns: A 0 (FALSE) or 1 (TRUE)

Function: This function returns TRUE if the specified task took more time to execute than
it was allocated. If no task was specified, then it returns TRUE if any task ran
over it's alloted execution time.

Availability: All devices

Requires: #USE RTOS(statistics)

Examples: rtos_overrun ()

Also See: None

rtos_run()

The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_run()

Parameters: None

Returns: None

Function: This function begins the execution of all enabled RTOS tasks. This function

controls the execution of the RTOS tasks at the allocated rate for each task.
This function will return only when rtos_terminate() is called.

Availability: All devices
Requires: #USE RTOS
Examples: rtos_run()

Also See: rtos terminate()

rtos_signal()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_signal (sem)

Parameters: sem is a global variable that represents the current availability of a shared
system resource (a semaphore).

238

Standard C Include Files

Returns: None

Function: This function can only be used by an RTOS task. This function increments sem
to let waiting tasks know that a shared resource is available for use.

Availability: All devices

Requires: #USE RTOS

Examples: rtos_signal (uart use)

Also See: rtos wait

rtos_stats()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.
Syntax: rtos_stats(task,&stat)
Parameters: task is the identifier of a function that is being used as an RTOS task.
stat is a structure containing the following:
struct rtos_stas_struct {
unsigned int32 task_total_ticks; // number of ticks the task has

used
unsigned int16 task_min_ticks; // the minimum number of ticks
used
unsigned intl6 task_max_ticks; // the maximum number of ticks
used
unsigned int16 hns_per_tick; // us = (ticks*hns_per_tick)/10
I
Returns: Undefined
Function: This function returns the statistic data for a specified task.
Availability: All devices
Requires: #USE RTOS(statistics)
Examples: rtos stats(echo, &stats)
Also See: None

rtos_terminate()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_terminate()

Parameters: None

Returns: None

Function: This function ends the execution of all RTOS tasks. The execution of the

program will continue with the first line of code after the rtos_run() call in the
program. (This function causes rtos_run() to return.)

Availability: ~ All devices
Requires: #USE RTOS

239

TEST PCD

Examples: rtos_terminate ()
Also See: rtos run
rtos_wait()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_wait (sem)

Parameters: sem is a global variable that represents the current availability of a shared
system resource (a semaphore).

Returns: None

Function: This function can only be used by an RTOS task. This function waits for sem to
be greater than 0 (shared resource is available), then decrements sem to claim
usage of the shared resource and continues the execution of the rest of the
code the RTOS task. This function allows other tasks to execute while the task
waits for the shared resource to be available.

Availability: All devices

Requires: #USE RTOS
Examples: rtos wait (uart use)
Also See: rtos signal

rtos_yield()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_yield()

Parameters: None

Returns: None

Function: This function can only be used in an RTOS task. This function stops the

execution of the current task and returns control of the processor to rtos_run().
When the next task executes, it will start it's execution on
the line of code after the rtos_yield().
Availability: All devices
Requires: #USE RTOS
Examples: void yield(void)
{
printf (“Yielding...\r\n”);
rtos yield();
prinEf (“Executing code after yield\r\n”);

Also See: None

240

Standard C Include Files

set_adc_channel()
set_adc_channel2()

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:

Also See:

set_adc_channel (chan [,neg]))

set_adc_channel2(chan)

chan is the channel number to select. Channel numbers start at 0 and are
labeled in the data sheet ANO, AN1. For devices with a differential ADC it sets
the positive channel to use.

neg is optional and is used for devices with a differential ADC only. It sets the
negative channel to use, channel numbers can be 0 to 6 or VSS. If no
parameter is used the negative channel will be set to VSS by default.
undefined

Specifies the channel to use for the next read_adc() call. Be aware that you
must wait a short time after changing the channel before you can get a valid
read. The time varies depending on the impedance of the input source. In
general 10us is good for most applications. You need not change the channel
before every read if the channel does not change.

Only available on devices with built in analog to digital converters

Nothing

set adc channel (2);

value =7read7adc();

ex_admm.c

read_adc(), setup_adc(), setup_adc_ports(), ADC Overview

set_compare_time()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

set_compare_time(x, ocr, [ocrs])

x is 1-8 and defines which output compare module to set time for

ocr is the compare time for the primary compare register.

ocrs is the optional compare time for the secondary register. Used for dual
compare mode.

None

This function sets the compare value for the output compare module. If the
output compare module is to perform only a single compare than the ocrs
register is not used. If the output compare module is using double compare
to generate an output pulse, then ocr signifies the start of the pulse and

ocrs defines the pulse termination time.

Only available on devices with output compare modules.

Nothing

// Pin OCl will be set when timer 2 is equal to 0xF000
setup timer2 (TMR_INTERNAL | TIMER DIV BY 8);

set compare time (1, O0xFO000);

setup_compare(l, COMPARE_SET ON_ MATCH | COMPARE_TIMERZ);

241

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Example Files:

Also See:

None
get_capture(), setup_compare(), ouput compare / PWM Overview

set_motor_pwm_duty()

Syntax:
Parameters:

Returns:
Function:
Availability:
Requires:
Examples:

Example
Files:
Also See:

set_motor_pwm_duty(pwm,group,time);
pwm- Defines the pwm module used.

group- Output pair number 1,2 or 3.

time- The value set in the duty cycle register.
void

Configures the motor control PWM unit duty.
Devices that have the motor control PWM unit.
None

set motor pmw duty(l,0,0x55); // Sets the PWMl Unit a duty
cycle value

None

get_motor pwm_count(), set_ motor pwm_event(), set_motor unit(),
setup_motor _pwm()

set_motor_pwm_event()

Syntax:
Parameters:

Returns:
Function:
Availability:
Requires:
Examples:

Example
Files:

Also See:

242

set_motor_pwm_event(pwm,time);
pwm- Defines the pwm module used.

time- The value in the special event comparator register used for scheduling
other events.

void

Configures the PWM event on the motor control unit.
Devices that have the motor control PWM unit.
None

set_motor_pmw_event(pwm,time);

None

get_motor_pwm_count(), setup_motor_pwm(), set_motor_unit(),
set_motor_pwm_duty();

Standard C Include Files

set_motor_unit()

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Example
Files:

Also See:

set_motor_unit(pwm,unit,options, active_deadtime, inactive_deadtime);
pwm- Defines the pwm module used
Unit- This will select Unit A or Unit B

options- The mode of the power PWM module. See the devices .h file for all
options

active_deadtime- Set the active deadtime for the unit
inactive_deadtime- Set the inactive deadtime for the unit
void

Configures the motor control PWM unit.

Devices that have the motor control PWM unit

None

set_motor unit (pwm,unit,MPWM INDEPENDENT | MPWM FORCE L 1,
active deadtime, inactive deadtime);

None

get_motor pwm count(), set_motor pwm_event(), set_motor pwm_duty(),
setup_motor pwm()

set_pullup()

Syntax:

Parameters:

Returns:

Function:

set_Pullup(state [, pin])

Pins are defined in the devices .h file. If no pin is provided in the function call,
then all of the pins are set to the passed in state.

State is either true or false.

undefined

Sets the pin's pull up state to the passed in state value. If no pin is included in
the function call, then all valid pins are set to the passed in state.

243

TEST PCD

Availability: All devices.
Requires: Pin constants are defined in the devices .h file.
Examples: set pullup(true, PIN BO);

//Sets pin BO's pull up state to true

set pullup(false);
//Sets all pin's pull up state to false

Example Files: None

Also See: None

set_ticks()

Syntax: value = set_ticks();

Parameters: value — a 8, 16, 32 or 64 bit integer, specifying the new value of the tick timer.

(int8, int16, int32 or int64)

Returns: void

Function: Sets the new value of the tick timer. Size passed depends on the size of the
tick timer.

Availability: All devices.

Requires: #USE TIMER(options)

Examples: #USE TIMER (TIMER=1,TICK=1ms,BITS=16,NOISR)

void main (void) {
unsigned intl6 value = 0x1000;

set ticks(value);

}

Example None
Files:
Also See: #USE TIMER, get_ticks()

244

Standard C Include Files

set_timerA()

Syntax: set_timerA(value);

Parameters: An 8 bit integer. Specifying the new value of the timer. (int8)

Returns: undefined

Function: Sets the current value of the timer. All timers count up. When a timer reaches
the maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2,
)

Availability: This function is only available on devices with Timer A hardware.

Requires: Nothing

Examples: // 20 mhz clock, no prescaler, set timer A

// to overflow in 35us

set timerA(81); // 256-(.000035/(4/20000000))

Example None
Files:
Also See: get_timerA(), setup_timer_A(), TimerA Overview

set_timerB()

Syntax: set_timerB(value);

Parameters: An 8 bit integer. Specifying the new value of the timer. (int8)

Returns: undefined

Function: Sets the current value of the timer. All timers count up. When a timer reaches
the maximum value it will flip over to 0 and continue counting (254, 255, 0, 1,
2,...).

Availability: This function is only available on devices with Timer B hardware.

Requires: Nothing

Exanuﬂes: // 20 mhz clock, no prescaler, set timer B

// to overflow in 35us

set timerB(81); // 256-(.000035/(4/20000000))

Example none
Files:
Also See: get_timerB(), setup_timer_B(), TimerB Overview

245

TEST PCD

set_timerx()

Syntax:

Parameters:
Returns:

Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

set_timerX(value)

A 16 hit integer, specifiying the new value of the timer. (int16)
void

Allows the user to set the value of the timer.
This function is available on all devices that have a valid timerX.
Nothing

if (EventOccured())
set timer2(0);//reset the timer.

None

Timer Overview, setup_timerX(), get timerXY() , set_timerX() ,

set_timerXY()

set_timerxy()

Syntax:
Parameters:
Returns:

Function:

Availability:

Requires:
Examples:

Example
Files:

Also See:

246

set_timerXY(value)
A 32 bit integer, specifiying the new value of the timer. (int32)
void
Retrieves the 32 bit value of the timers X and Y, specified by XY (which may be
23, 45, 67 and 89)
This function is available on all devices that have a valid 32 bit enabled timers.
Timers2& 3,4 &5,6 &7 and 8 & 9 may be used. The target device must have
one of these timer sets. The target timers must be enabled as 32 bit.
Nothing
if (get timerd45() == THRESHOLD)
set timer (THRESHOLD + 0x1000);//skip those timer values

None

Timer Overview, setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

Standard C Include Files

set_tris_x()

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example
Files:

Also See:

set_tris_a (value)
set_tris_b (value)
set_tris_c (value)
set_tris_d (value)
set_tris_e (value)
set_tris_f (value)
set_tris_g (value)
set_tris_h (value)
set_tris_j (value)
set_tris_k (value)
value is an 16 bit int with each bit representing a bit of the I/O port.

undefined

These functions allow the I/O port direction (TRI-State) registers to be set. This
must be used with FAST_1O and when I/O ports are accessed as memory such
as when a # word directive is used to access an I/O port. Using the default
standard 1/O the built in functions set the I/O direction automatically.

Each bit in the value represents one pin. A 1 indicates the pin is input and a 0
indicates it is output.

All devices (however not all devices have all 1/0O ports)

Nothing
SET TRIS B(0x0F);
// B7,B6,B5,B4 are outputs
// B15,B14,B13,B12,B11,B10,B9,B8, B3,B2,B1,B0 are inputs

Icd.c

#USE FAST 10, #USE FIXED_10, #USE STANDARD_10, General Purpose /O

set_uart_speed()

Syntax:

Parameters:

Returns:

set_uart_speed (baud, [stream, clock])

baud is a constant representing the number of bits per second.

stream is an optional stream identifier.

clock is an optional parameter to indicate what the current clock is if it is
different from the #use delay value

undefined

247

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

Function: Changes the baud rate of the built-in hardware RS232 serial port at run-time.
Availability: This function is only available on devices with a built in UART.

Requires: #USE RS232

Examples: // Set baud rate based on setting

// of pins BO and Bl

switch(input b() & 3) {
case 0 : set uart speed(2400); break;
case 1 : set uart speed(4800); break;
case 2 : set uart speed(9600); break;
case 3 : set uart speed(19200); break;

}

Example loader.c
Files:
Also See: #USE RS232, putc(), getc(), setup uart(), RS232 1/0O Overview

setimp()

Syntax: result = setjmp (env)
Parameters: env: The data object that will receive the current environment
Returns: If the return is from a direct invocation, this function returns 0.

If the return is from a call to the longjmp function, the setjmp function returns a
nonzero value and it's the same value passed to the longjmp function.

Function: Stores information on the current calling context in a data object of type jmp_buf
and which marks where you want control to pass on a corresponding longjmp
call.

Availability: All devices

Requires: #INCLUDE <setjmp.h>

Examples: result = setjmp (jmpbuf) ;

Example None

Files:

Also See: longjmp()

248

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

setup_adc(mode)
setup_adc2(mode)

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

setup_adc (mode);
setup_adc2(mode);
mode- Analog to digital mode. The valid options vary depending on the
device. See the devices .h file for all options. Some typical options include:
e ADC_OFF
o ADC_CLOCK_INTERNAL
e ADC_CLOCK_DIV_32
e ADC_CLOCK_INTERNAL — The ADC will use an internal clock
e ADC_CLOCK _DIV_32 — The ADC will use the external clock scaled
down by 32
e ADC_TAD_MUL_16 — The ADC sample time will be 16 times the
ADC conversion time
undefined
Configures the ADC clock speed and the ADC sample time. The ADC
converters have a maximum speed of operation, so ADC clock needs to be
scaled accordingly. In addition, the sample time can be set by using a bitwise
OR to concatenate the constant to the argument.
Only the devices with built in analog to digital converter.
Constants are defined in the devices .h file.
setup adc ports(ALL ANALOG);

setup_adc (ADC_CLOCK INTERNAL) ;
set _adc channel(0);

value = read adc();
setup_adc(ADC OFF);
ex_admm.c

setup_adc _ports(), set_adc channel(), read_adc(), #DEVICE, ADC Overview,
see header file for device selected

setup_adc_ports()
setup_adc_ports2()

Syntax:

Parameters:

setup_adc_ports (value)
setup_adc_ports (ports, [reference])
setup_adc_ports (ports, [reference])

value - a constant defined in the devices .h file
ports - is a constant specifying the ADC pins to use

reference - is an optional constant specifying the ADC reference to use
By default, the reference voltage are Vss and Vdd

249

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

ports is a constant specifying the ADC pins to use
reference is an optional constant specifying the ADC reference voltages to use.
By default the reference voltages are Vss and Vdd.

Returns: undefined
Function: Sets up the ADC pins to be analog, digital, or a combination and the voltage
reference to use when computing the ADC value. The allowed analog pin
combinations vary depending on the chip and are defined by using the bitwise
OR to concatenate selected pins together. Check the device include file for a
complete list of available pins and reference voltage settings. The constants
ALL_ANALOG and NO_ANALOGS are valid for all chips. Some other example
pin definitions are:
* ANALOG_RA3_REF- All analog and RA3 is the reference
* RAO_RA1 RA3_ANALOG- Just RAO, RA1l and RAS are analog
* SAN1 | sAN2 — AN1 and AN2 are analog, remaining pins are digital
* SANO | SAN3 — ANO and AN3 are analog, remaining pins are digital

Availability: Only available on devices with built in analog to digital converters
Requires: Constants are defined in the devices .h file.
Examples: // Set all ADC pins to analog mode

setup adc ports (ALL ANALOG) ;

// Pins ANO, ANl and AN3 are analog and all other pins
// are digital.
setup_adc ports (sANO|sAN1|sAN3);

// Pins ANO and ANl are analog. The Vrefl pin
// and Vdd are used for voltage references
setup adc ports(sANO|sANl, VREF VDD);

Example ex_admm.c
Files:
Also See: setup_adc(), read adc(), set _adc_channel(), ADC Overview

setup_capture()

Syntax: setup_capture(x, mode)

Parameters: x is 1-8 and defines which input capture module is being configured
mode is defined by the constants in the devices .h file

Returns: None

Function: This function specifies how the input capture module is going to function based
on the value of mode. The device specific options are listed in the device .h
file.

Availability: Only available on devices with Input Capture modules

Requires: None

Examples: setup_timer3 (TMR INTERNAL | TMR DIV BY 8);

setup_capture (2, CAPTURE FE | CAPTURE TIMER3);
250

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

while (TRUE) {
timerValue = get capture (2, TRUE);
printf (“Capture 2 occurred at: $LU”, timerValue);
}
Example Files: None

Also See: get capture(), setup_compare(), Input Capture Overview

setup_comparator()

Syntax: setup_comparator (mode)

Parameters: mode is a bit-field comprised of the following constants:
NC_NC_NC_NC
A4_A5_NC_NC
A4_VR_NC_NC
A5_VR_NC_NC
NC_NC_A2_A3
NC_NC_A2_VR
NC_NC_A3_ VR
A4_A5_A2 A3
A4_VR_A2_VR
A5_VR_A3 VR
C1_INVERT
C2_INVERT
C1_OUTPUT
C2_OUTPUT

Returns: void

Function: Configures the voltage comparator.

The voltage comparator allows you to compare two voltages and find the
greater of them. The configuration constants for this function specify the
sources for the comparator in the order C1- C1+, C2-, C2+.The constants may
be or'ed together if the NC’s do not overlap; A4_A5 NC_NC | NC_NC_A3_VR
is valid, however, A4 A5 NC_NC | A4_VR_NC_NC may produce unexpected
results. The results of the comparator module are stored in CLOUT and
C20UT, respectively. Cx_INVERT will invert the results of the comparator and
Cx_OUTPUT will output the results to the comparator output pin.

Availability: Some devices, consult your target datasheet.
Requires Constants are defined in the devices .h file.
Examples: setup comparator (A4 A5 NC NC);//use Cl, not C2

setup_compare()

Syntax: setup_compare(x, mode)
Parameters: mode is defined by the constants in the devices .h file
x is 1-8 and specifies which OC pin to use.

251

TEST PCD

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:

Also See:

None

This function specifies how the output compare module is going to function
based on the value of mode. The device specific options are listed in the device
.hfile.

Only available on devices with output compare modules.

None

// Pin OCl will be set when timer 2 is equal to 0xF000
setup timer2 (TMR_INTERNAL | TIMER DIV BY 16);

set compare time (1, 0xF000);

setup compare(l, COMPARE SET ON MATCH | COMPARE TIMERZ2);

None

set_compare_time(), set_pwm_duty(), setup capture(), Output Compare / PWM
Overview

setup_crc(mode)

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Example
Files:
Also See:

252

setup_crc(polynomial terms)

polynomial - This will setup the actual polynomial in the CRC engine. The power
of each term is passed separated by a comma. 0 is allowed, but ignored. The
following define is added to the device's header file (32-bit CRC Moduel Only), to
enable little-endian shift direction:

- CRC_LITTLE_ENDIAN

undefined

Configures the CRC engine register with the polynomial

Only the devices with built in CRC module

Nothing

setup_crc (12, 5);
// CRC Polynomial is X' + X° + 1

setup crc(l6, 15, 3, 1);
// CRC Polynomial is X'® + x» + X* + X'+ 1

ex.c

crc_init(); crc_calc(); crc_calc8()

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

setup_dac()

Syntax: setup_dac(mode);
setup_dac(mode, divisor);
Parameters: mode- The valid options vary depending on the device. See the devices .h file
for all options. Some typical options include:
- DAC_OUTPUT
divisor- Divides the provided clock
Returns: undefined
Function: Configures the DAC including reference voltage. Configures the DAC including
channel output and clock speed.
Availability: Only the devices with built in digital to analog converter.
Requires: Constants are defined in the devices .h file.
Examples: setup _dac (DAC_VDD | DAC OUTPUT) ;
dac write(value);
setup dac (DAC_RIGHT ON, 5);
Example None
Files:
Also See: dac_write()), DAC Overview, See header file for device selected
setup_dci()
Syntax: setup_dci(configuration, data size, rx config, tx config, sample rate);
Parameters: configuration - Specifies the configuration the Data Converter Interface should be

initialized into, including the mode of transmission and bus properties. The
following constants may be combined (OR’d) for this parameter:

- CODEC_MULTICHANNEL

- CODEC_|2S- CODEC_AC16

- CODEC_AC20- JUSTIFY_DATA- DCI_MASTER

- DCI_SLAVE: TRISTATE_BUS- MULTI_DEVICE_BUS
- SAMPLE_FALLING_EDGE: SAMPLE_RISING_EDGE
- DCI_CLOCK_INPUT: DCI_CLOCK_OUTPUT

253

TEST PCD

Returns:
Function:
Availability:
Requires:

Examples:

Example
Files:

Also See:

254

data size — Specifies the size of frames and words in the transmission:

- DCI_xBIT_WORD: x may be 4 through 16
- DCI_XWORD_FRAME: x may be 1 through 16
- DCI_XWORD_INTERRUPT: x may be 1 through 4

rx config- Specifies which words of a given frame the DCI module will receive
(commonly used for a multi-channel, shared bus situation)

- RECEIVE_SLOTXx: x May be 0 through 15
- RECEIVE_ALL:- RECEIVE_NONE

tx config- Specifies which words of a given frame the DCI module will transmit on.

- TRANSMIT_SLOTx: x May be 0 through 15
- TRANSMIT _ALL
- TRANSMIT _NONE

sample rate-The desired number of frames per second that the DCI module
should produce. Use a numeric value for this parameter. Keep in mind that not all
rates are achievable with a given clock. Consult the device datasheet for more
information on selecting an adequate clock.

undefined

Configures the DCI module

Only on devices with the DCI peripheral
Constants are defined in the devices .h file.

dci initialize ((I2S MODE | DCI_MASTER | DCI_CLOCK OUTPUT |
SAMPLE RISING EDGE | UNDERFLOW LAST |
MULTI_DEVICE_BUS),
DCI_1WORD FRAME | DCI_16BIT WORD |
DCI_2WORD INTERRUPT,
RECEIVE_SLOTO | RECEIVE_SLOTI,
TRANSMIT SLOTO | TRANSMIT SLOTI,
44100) ;

None

DCI Overview, dci start(), dci write(), dci read(), dci transmit ready(), dci data

received()

Standard C Include Files

setup_dma()

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires
Examples:

Example
Files:
Also See

setup_dma(channel, peripheral,mode);

Channel- The channel used in the DMA transfer

peripheral - The peripheral that the DMA wishes to talk to.

mode- This will specify the mode used in the DMA transfer

void

Configures the DMA module to copy data from the specified peripheral to RAM
allocated for the DMA channel.

Devices that have the DMA module.

Nothing

setup dma (2, DMA IN SPI1, DMA BYTE);

// This will setup the DMA channel 1 to talk to SPI1l input
buffer.

None

dma_start(), dma_status()

setup_high_speed _adc()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

setup_high_speed_adc (mode);
mode — Analog to digital mode. The valid options vary depending on the
device. See the devices .h file for all options. Some typical options include:

- ADC_OFF

-ADC_CLOCK DIV_1

- ADC_HALT _IDLE — The ADC will not run when PIC is idle.
Undefined
Configures the High-Speed ADC clock speed and other High-Speed ADC
options including, when the ADC interrupts occurs, the output result format, the
conversion order, whether the ADC pair is sampled sequentially or

simultaneously, and whether the dedicated sample and hold is continuously
sampled or samples when a trigger event occurs.

Only on devices with a built-in high-speed analog to digital converter.
Constants are define in the device .h file.

setup high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER);
setup high speed adc (ADC CLOCK DIV 4);

read high speed adc (0, START AND READ, result);
setup_high speed adc (ADC_OFF) ;

None

setup _high speed adc pair(), read high speed adc(),
high speed adc done()

255

TEST PCD

setup_high_speed _adc_pair()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

256

setup_high_speed_adc_pair(pair, mode);

pair — The High-Speed ADC pair number to setup, valid values are 0 to total
number of ADC pairs. 0 sets up ADC pair ANO and AN1, 1 sets up ADC
pair AN2 and AN3, etc.

mode — ADC pair mode. The valid options vary depending on the device.
See the devices .h file for all options. Some typical options include:

- INDIVIDUAL_SOFTWARE_TRIGGER
- GLOBAL_SOFTWARE_TRIGGER

- PWM_PRIMARY_SE_TRIGGER

- PWM_GEN1_PRIMARY_TRIGGER

- PWM_GEN2_PRIMARY_TRIGGER

Undefined
Sets up the analog pins and trigger source for the specified ADC pair. Also
sets up whether ADC conversion for the specified pair triggers the common

ADC interrupt.

If zero is passed for the second parameter the corresponding analog pins
will be set to digital pins.

Only on devices with a built-in high-speed analog to digital converter.
Constants are define in the device .h file.

setup high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
setup _high speed adc pair (1, GLOBAL SOFTWARE TRIGGER);

setup high speed adc pair(2, 0) - sets AN4 and ANS5 as
digital pins.

None

setup_high_speed_adc(), read_high_speed_adc(), high_speed adc_done()

Standard C Include Files

setup_low_volt_detect()

Syntax:
Parameters:

Returns:
Function:

Auvailability:

Requires
Examples:

setup_low_volt_detect(mode)

mode may be one of the constants defined in the devices .h file. LVD_LVDIN,
LvD_45, LVD_42,LVD_40, LvD_38, LVD_36, LVD_35, LVD_33, LVD_30,
LvD_28, LVD_27,LVD_25, LvD_23, LVD_21,LVD_19

One of the following may be or'ed(via |) with the above if high voltage detect is
also available in the device

LVD_TRIGGER_BELOW, LVD_TRIGGER_ABOVE

undefined

This function controls the high/low voltage detect module in the device. The mode
constants specifies the voltage trip point and a direction of change from that point

(available only if high voltage detect module is included in the device). If the
device experiences a change past the trip point in the specified direction the

interrupt flag is set and if the interrupt is enabled the execution branches to the

interrupt service routine.

This function is only available with devices that have the high/low voltage detect

module.
Constants are defined in the devices.h file.
setup low volt detect(LVD TRIGGER BELOW | LVD 36);

This would trigger the interrupt when the voltage is below 3.6 volts

setup_motor_pwm()

Syntax:

Parameters:

Returns:
Function:

Availability:

setup_motor_pwm(pwm,options, timebase);
setup_motor_pwm(pwm,options,prescale,postscale,timebase)

Pwm- Defines the pwm module used.

Options- The mode of the power PWM module. See the devices .h file for all

options

timebase- This parameter sets up the PWM time base pre-scale and post-
scale.

prescale- This will select the PWM timebase prescale setting

postscale- This will select the PWM timebase postscale setting
void
Configures the motor control PWM module

Devices that have the motor control PWM unit.

257

TEST PCD

Requires: None

Examples: setup motor pwm(l,MPWM FREE RUN | MPWM SYNC OVERRIDES,
timebase) ;

Example Files: None

Also See: get motor pwm count(), set motor pwm event(), set motor unit(), set motor
pwm duty();

setup_oscillator()

Syntax: setup_oscillator(mode, target [,source] [,divide])
Parameters: Mode is one of:

* OSC_INTERNAL

* OSC_CRYSTAL

+ OSC_CLOCK

*+ OSC_RC

* OSC_SECONDARY

Target is the target frequency to run the device it.

Source is optional. It specifies the external crystal/oscillator frequency. If omitted
the value from the last #USE DELAY is used. If mode is OSC_INTERNAL,
source is an optional tune value for the internal oscillator for PICs that support it. If
omitted a tune value of zero will be used.

Divide in optional. For PICs that support it, it specifies the divide ration for the
Display Module Interface Clock. A number from O to 64 divides the clock from 1 to
17 increasing in increments of 0.25, a number from 64 to 96 divides the clock from
17 to 33 increasing in increments of 0.5, and a number from 96 to 127 divides the
clock from 33 to 64 increasing in increments of 1. If omitted zero will be used for

divide by 1.
Returns: None
Function: Configures the oscillator with preset internal and external source configurations. If

the device fuses are set and #use delay() is specified, the compiler will configure
the oscillator. Use this function for explicit configuration or programming dynamic
clock switches. Please consult your target data sheets for valid configurations,
especially when using the PLL multiplier, as many frequency range restrictions
are specified.

Availability: This function is available on all devices.

Requires: The configuration constants are defined in the device’s header file.

Examples: setup oscillator(OSC CRYSTAL, 4000000, 16000000);
setup oscillator(OSC INTERNAL, 29480000);

Example None

Files:

Also See: setup_wdt(), Internal Oscillator Overview

258

Standard C Include Files

setup_pmp(option,addres
S_mask)

Syntax: setup_pmp(options,address_mask);

Parameters: options- The mode of the Parallel Master Port that allows to set the Master Port
mode, read-write strobe options and other functionality of the PMPort module.
See the device's .h file for all options. Some typical options include:

PAR_PSP_AUTO_INC
PAR_CONTINUE_IN_IDLE

PAR_INTR_ON_RW /lInterrupt on read write

PAR_INC_ADDR /lincrement address by 1 every
read/write cycle

PAR_MASTER_MODE_1 //Master Mode 1

PAR_WAITE4 /l4 Tcy Wait for data hold after
strobe

address_mask- this allows the user to setup the address enable register with a
16-bit value. This value determines which address lines are active from the
available 16 address lines PMAO:PMA15.

Returns: Undefined.

Function: Configures various options in the PMP module. The options are present in the
device's .h file and they are used to setup the module. The PMP module is highly
configurable and this function allows users to setup configurations like the Slave
module, Interrupt options, address increment/decrement options, Address enable
bits, and various strobe and delay options.

Availability: Only the devices with a built-in Parallel Master Port module.

Requires: Constants are defined in the device's .h file.

Examples: setup psp (PAR _ENABLE| //Sets up Master mode with
address
PAR_MASTER MODE 1 |PAR //lines PMAO:PMA7

STOP_IN_IDLE, 0x00FF) ;

Example None
Files:
Also See: setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(),

pmp_write(), psp_output_full(), psp_input_full(), psp_overflow(),
pmp_output full(), pmp_input full(), pmp_overflow()
See header file for device selected

259

TEST PCD

setup_power_pwm_pins(

)

Syntax: setup_power_pwm_pins(module0,modulel,module2,module3)

Parameters: For each module (two pins) specify:
PWM_OFF, PWM_ODD_ON, PWM_BOTH_ON,
PWM_COMPLEMENTARY

Returns: undefined

Function: Configures the pins of the Pulse Width Modulation (PWM) device.

Availability: All devices equipped with a motor control PWM.

Requires: None

Exanuﬂes: setup power pwm pins (PWM OFF, PWM OFF, PWM OFF,
PWM_OFF) ;

setup power pwm pins (PWM COMPLEMENTARY,
PWM COMPLEMENTARY, PWM OFF, PWM OFF);

Example Files: None
Also See: setup_power_pwm(), set_power_pwm_override(),set_power_pwmX_duty()

setup_psp(option,addres

S_mask)

Syntax: setup_psp (options,address_mask);
setup_psp(options);

Parameters: Option- The mode of the Parallel slave port. This allows to set the slave port
mode, read-write strobe options and other functionality of the PMP/EPMP
module. See the devices .h file for all options. Some typical options include:
- PAR_PSP_AUTO_INC
- PAR_CONTINUE_IN_IDLE
- PAR_INTR_ON_RW /lInterrupt on read write
- PAR_INC_ADDR /liIncrement address by 1 every
read/write cycle
- PAR_WAITE4 /l4 Tcy Wait for data hold after
strobe
address_mask- This allows the user to setup the address enable register with
a 16 bit or 32 bit (EPMP) value. This value determines which address lines are
active from the available 16 address lines PMAO: PMA15 or 32 address lines
PMAO:PMA31 (EPMP only).

Returns: Undefined.

260

Function: Configures various options in the PMP/EPMP module. The options are present
in the device.h file and they are used to setup the module. The PMP/EPMP
module is highly configurable and this function allows users to setup
configurations like the Slave mode, Interrupt options, address
increment/decrement options, Address enable bits and various strobe and
delay options.

Availability: Only the devices with a built in Parallel Port module or Enhanced Parallel
Master Port module.

Requires: Constants are defined in the devices .h file.

Exanuﬂes: setup psp(PAR PSP AUTO INC| //Sets up legacy slave mode
with
PAR STOP_ IN IDLE,OxOOFF); //read and write buffers
auto increment.

Example None

Files:

Also See: setup_pmp() , pmp_address() , pmp_read() , psp_read() , psp_write() ,
pmp_write() , psp_output full(), psp_input full(), psp_overflow(),
pmp_output full() , pmp_input_full(), pmp_overflow(),see header file for device
selected.

setup_qgei()

Syntax: setup_gei([unit,Joptions, filter, maxcount);

Parameters: Options- The mode of the QEI module. See the devices .h file for all options

Some common options are:
- QEI_MODE_X2
- QEI_TIMER_GATED
- QEI_TIMER_DIV_BY_1
filter - This parameter is optional and the user can specify the digital filter clock
divisor.
maxcount - This will specify the value at which to reset the position counter.
unit - Optional unit number, defaults to 1.
Returns: void
Function: Configures the Quadrature Encoder Interface. Various settings
like modes, direction can be setup.
Availability: Devices that have the QEI module.

Standard C Include Files

261

TEST PCD

Requires:

Examples:

Example Files:

Also See:

Nothing.

setup gei (QEI MODE X2|QEI TIMER INTERNAL,QEI FILTER DIV 2,
QEI FORWARD) ;

None

gei_set count() , gei_get count() , gei_status()

setup_rtc()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

setup_rtc (options, calibration);
Options- The mode of the RTCC module. See the devices .h file for all options

Calibration- This parameter is optional and the user can specify an 8 bit value
that will get written to the calibration configuration register.

void

Configures the Real Time Clock and Calendar module. The module requires an
external 32.768 kHz Clock Crystal for operation.

Devices that have the RTCC module.
Nothing.

setup rtc(RTC_ENABLE | RTC OUTPUT SECONDS, 0x00);
// Enable RTCC module with seconds clock and no calibration

None

rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(),

setup_rtc()

setup_rtc_alarm()

Syntax:
Parameters:

262

setup_rtc_alarm(options, mask, repeat);
options- The mode of the RTCC module. See the devices .h file for all options

mask- This parameter is optional and the user can specify the alarm mask bits

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:

Also See:

Standard C Include Files

for the alarm configuration.

repeat- This will specify the number of times the alarm will repeat. It can have a
max value of 255.

void

Configures the alarm of the RTCC module. The mask and repeat parameters
are optional, and allow the use to configure the alarm settings on the RTCC
module.

Devices that have the RTCC module.
Nothing.
setup rtc_alarm(RTC ALARM ENABLE, RTC ALARM HOUR, 3);

None

rtc_read(), rtc_alarm read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(),

setup_rtc()

setup_spi() setup_spi2()

Syntax:

Parameters:

Returns:

Function:

setup_spi (mode)
setup_spi2 (mode)

mode may be:

. SPI_MASTER, SPI_SLAVE, SPI_SS_DISABLED
SPI_L_TO_H, SPI_H_TO_L
SPI_CLK_DIV_4, SPI_CLK_DIV_16,
SPI_CLK_DIV_64, SPI_CLK_T2
SPI_SAMPLE_AT_END, SPI_XMIT_L_TO_H
SPI_MODE_16B, SPI_XMIT_L_TO_H
Constants from each group may be or'ed together with |.

undefined

Configures the hardware SPI™ module.

* SPI_MASTER will configure the module as the bus master

» SPI_SLAVE will configure the module as a slave on the SPI™ bus

* SPI_SS_DISABLED will turn off the slave select pin so the slave module
receives any transmission on the bus.

» SPI_x_to_y will specify the clock edge on which to sample and transmit data
* SPI_CLK_DIV_x will specify the divisor used to create the SCK clock from
system clock.

263

TEST PCD

Availability:
Requires:
Examples:
Example
Files:

Also See:

This function is only available on devices with SPI hardware.
Constants are defined in the devices .h file.
setup spi(SPI MASTER | SPI L TO H | SPI DIV BY 16);

ex_spi.c

spi_write(), spi_read(), spi_data_is_in(), SPI Overview

setup_timerx()

Syntax:

Parameters:

Returns:
Function:

Availability:

264

setup_timerX(mode)
setup_timerX(mode,period)

Mode is a bit-field comprised of the following configuration constants:
* TMR_DISABLED: Disables the timer operation.

* TMR_INTERNAL: Enables the timer operation using the system clock. Without
divisions, the timer will increment on every instruction cycle. On PCD, this is half
the oscillator frequency.

* TMR_EXTERNAL: Uses a clock source that is connected to the
SOSCI/SOSCO pins

* T1_EXTERNAL_SYNC: Uses a clock source that is connected to the
SOSCI/SOSCO pins. The timer will increment on the rising edge of the external
clock which is synchronized to the internal clock phases. This mode is available
only for Timer1.

* T1_EXTERNAL_RTC: Uses a low power clock source connected to the
SOSCI/SOSCO pins; suitable for use as a real time clock. If this mode is used,
the low power oscillator will be enabled by the setup_timer function. This mode
is available only for Timer1.

* TMR_DIV_BY_X: X is the number of input clock cycles to pass before the
timer is incremented. X may be 1, 8, 64 or 256.

* TMR_32_BIT: This configuration concatenates the timers into 32 bit mode.
This constant should be used with timers 2, 4, 6 and 8 only.

* Period is an optional 16 bit integer parameter that specifies the timer period.
The default value is OXFFFF.

void

Sets up the timer specified by X (May be 1 — 9). X must be a valid timer on the
target device.

This function is available on all devices that have a valid timer X. Use getenv or
refer to the target datasheet to determine which timers are valid.

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Requires:
Examples:

Example
Files:
Also See:

Standard C Include Files

Configuration constants are defined in the device's header file.

/* setup a timer that increments every 64th instruction cycle
with an overflow period of 0xA010 */

setup_ timer2 (TMR_INTERNAL | TMR DIV BY 64, 0xA010);

/* Setup another timer as a 32-bit hybrid with a period of
OxFFFFFFFF and a interrupt that will be fired when that timer
overflows*/

setup_timer4 (TMR_32_BIT); //use get_timer45() to get the timer
value

enable interrupts(int timer5);//use the odd number timer for
the interrupt

None

Timer Overview, setup_timerX(), get_timerXY(), set_timerX(), set_timerXY()

setup_timer_A()

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Example Files:

Also See:

setup_timer_A (mode);

mode values may be:
- TA_OFF, TA_INTERNAL, TA_EXT H TO_ L, TA EXT L_TO_H
-TA_DIV_1, TA_DIV_2, TA_DIV_4, TA_DIV_8, TA_DIV_16, TA_DIV_32,

TA_DIV_64, TA DIV_128, TA_DIV_256

- constants from different groups may be or'ed together with |.

undefined

sets up Timer A.

This function is only available on devices with Timer A hardware.

Constants are defined in the device's .h file.

setup timer A(TA OFF);
setup timer A(TA INTERNAL | TA DIV 256);
setup timer A(TA EXT L TO H | TA DIV 1);

none

get_timerA(), set_timerA(), TimerA Overview

265

TEST PCD

setup_timer_B()

Syntax: setup_timer_B (mode);

Parameters: mode values may be:
- TB_OFF, TB_INTERNAL, TB_EXT H_TO L, TB_EXT L_TO H
-TB_DIV_1, TB_DIV_2, TB_DIV_4, TB_DIV_8, TB_DIV_16, TB_DIV_32,
TB_DIV_64, TB_DIV_128, TB_DIV_256
- constants from different groups may be or'ed together with |.

Returns: undefined

Function: sets up Timer B

Availability: This function is only available on devices with Timer B hardware.
Requires: Constants are defined in device's .h file.

Examples: setup timer B(TB OFF) ;

setup timer B(TB INTERNAL | TB DIV 256);
setup timer B(TA EXT L TO H | TB DIV 1);

Example Files: none

Also See: get_timerB(), set_timerB(), TimerB Overview

setup_uart()

Syntax: setup_uart(baud, stream)
setup_uart(baud)
setup_uart(baud, stream, clock)

Parameters: baud is a constant representing the number of bits per second. A one or zero
may also be passed to control the on/off status. Stream is an optional stream
identifier.

Chips with the advanced UART may also use the following constants:
UART_ADDRESS UART only accepts data with 9th bit=1
UART_DATA UART accepts all data

Chips with the EUART H/W may use the following constants:
UART_AUTODETECT Waits for 0x55 character and sets the UART baud rate to
match.

UART_AUTODETECT_NOWAIT Same as above function, except returns before

266

Returns:

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

Standard C Include Files

0x55 is received. KBHIT() will be true when the match is made. A call to
GETC() will clear the character.

UART_WAKEUP_ON_RDA Wakes PIC up out of sleep when RCV goes from
high to low

clock - If specified this is the clock rate this function should assume. The default
comes from the #USE DELAY.

undefined

Very similar to SET_UART_SPEED. If 1 is passed as a parameter, the UART is
turned on, and if 0 is passed, UART is turned off. If a BAUD rate is passed to it,
the UART is also turned on, if not already on.

This function is only available on devices with a built in UART.

#USE RS232

setup _uart (9600) ;
setup uart (9600, rsOut);

None

#USE RS232, putc(), getc(), RS232 I/O Overview

setup_vref()

Syntax:

Parameters:

Returns:

Function:

setup_vref (mode)

mode is a bit-field comprised of the following constants:
* VREF_DISABLED

« VREF_LOW (Vdd * value / 24)

* VREF_HIGH (Vdd * value / 32 + VVdd/4)

* VREF_ANALOG

undefined

Configures the voltage reference circuit used by the voltage comparator.

The voltage reference circuit allows you to specify a reference voltage that the
comparator module may use. You may use the Vdd and Vss voltages as your
reference or you may specify VREF_ANALOG to use supplied Vdd and Vss.
Voltages may also be tuned to specific values in steps, 0 through 15. That
value must be or'ed to the configuration constants.

267

TEST PCD

Availability:
Requires:

Examples:

Example Files:

Some devices, consult your target datasheet.
Constants are defined in the devices .h file.

/* Use the 15th step on the course setting */
setup vref (VREF LOW | 14);

None

setup_wdt()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

setup_wdt (mode)

Mode is a bit-field comprised of the following constants:
«WDT_ON
«WDT_OFF

void

Configures the watchdog timer.

The watchdog timer is used to monitor the software. If the software does not reset
the watchdog timer before it overflows, the device is reset, preventing the device
from hanging until a manual reset is initiated. The watchdog timer is derived from
the slow internal timer.

All devices

#FUSES, Constants are defined in the devices .h file.
setup_ wdt (WDT_ON) ;

ex_wdt.c

Internal Oscillator Overview

shift_left()

Syntax:
Parameters:

Returns:

Function:

Availability:
268

shift_left (address, bytes, value)
address is a pointer to memory, bytes is a count of the number of bytes to work

with, value is a 0 to 1 to be shifted in.

0 or 1 for the bit shifted out

Shifts a bit into an array or structure. The address may be an array identifier or
an address to a structure (such as &data). Bit 0 of the lowest byte in RAM is
treated as the LSB.

All devices

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Requires:
Examples:

Example
Files:

Also See:

Standard C Include Files

Nothing
byte buffer([3];
for (i=0; 1i<=24; ++1i){
// Wait for clock high
while (!input(PIN A2));
shift left (buffer,3,input (PIN _A3));
// Wait for clock low
while (input (PIN_A2));
t
// reads 24 bits from pin A3,each bit is read
// on a low to high on pin A2

ex_extee.c, 9356.c

shift_right(), rotate right(), rotate left()

shift_right()

Syntax:

Parameters:

Returns:
Function:

Availability:

Requires:
Examples:

Example
Files:
Also See:

shift_right (address, bytes, value)
address is a pointer to memory, bytes is a count of the number of bytes to work
with, value is a 0 to 1 to be shifted in.

0 or 1 for the bit shifted out

Shifts a bit into an array or structure. The address may be an array identifier or
an address to a structure (such as &data). Bit O of the lowest byte in RAM is
treated as the LSB.

All devices

Nothing

// reads 16 bits from pin Al, each bit is read
// on a low to high on pin A2

struct {
byte time;
byte command : 4;
byte source : 4;} msg;

for (i=0; i<=l6; ++1i) {
while (!input (PIN A2));
shift right (&msg, 3, input (PIN Al));
while (input(PIN_A2)) ;}

// This shifts 8 bits out PIN A0, LSB first.
for (i=0;1<8; ++1)

output bit (PIN _AO,shift right(&data,1,0));
ex_extee.c, 9356.c

shift_left(), rotate right(), rotate left()

269

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink2.click()

TEST PCD

sin() cos() tan() asin()
acos() atan() sinh() cosh()
tanh() atan2()

Syntax: val = sin (rad)
val = cos (rad)
val = tan (rad)
rad = asin (val)
radl = acos (val)
rad = atan (val)
rad2=atan2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)
Parameters: rad is any float type representing an angle in Radians -2pi to 2pi.
val is any float type with the range -1.0 to 1.0.
Value is any float type
Returns: rad is a float with a precision equal to val representing an angle in Radians -pi/2
to pi/2

val is a float with a precision equal to rad within the range -1.0 to 1.0.

radl is a float with a precision equal to val representing an angle in Radians 0 to
pi

rad2 is a float with a precision equal to val representing an angle in Radians -pi
to pi

Result is a float with a precision equal to value

Function: These functions perform basic Trigonometric functions.
sin returns the sine value of the parameter (measured in radians)
cos returns the cosine value of the parameter (measured in radians)
tan returns the tangent value of the parameter (measured in radians
asin returns the arc sine value in the range [-pi/2,+pi/2] radians
acos returns the arc cosine value in the range[0,pi] radians
atan returns the arc tangent value in the range [-pi/2,+pi/2] radians
atan2 returns the arc tangent of y/x in the range [-pi,+pi] radians
sinh returns the hyperbolic sine of x
cosh returns the hyperbolic cosine of x
tanh returns the hyperbolic tangent of x

Note on error handling:
If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print

270

Availability:
Requires:
Examples:

Example
Files:

Also See:

sleep()

Syntax:
Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:

Also See:

Standard C Include Files

the error using the perror function.

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

Range error occur in the following cases:

cosh: when the argument is too large

sinh: when the argument is too large

All devices

#INCLUDE <math.h>

float phase;

// Output one sine wave

for (phase=0; phase<2*3.141596; phase+=0.01)
set analog voltage(sin(phase)+l);

ex_tank.c

lod(), 10g10(), exp(), pow(), sart()

sleep(mode)

mode configures what sleep mode to enter, mode is optional. If mode is
SLEEP_IDLE, the PIC will stop executing code but the peripherals will still be
operational. If mode is SLEEP_FULL, the PIC will stop executing code and the
peripherals will stop being clocked, peripherals that do not need a clock or are
using an external clock will still be operational. SLEEP_FULL will reduce power
consumption the most. If no parameter is specified, SLEEP_FULL will be used.
Undefined

Issues a SLEEP instruction. Details are device dependent. However, in general
the part will enter low power mode and halt program execution until woken by
specific external events. Depending on the cause of the wake up execution may
continue after the sleep instruction. The compiler inserts a sleep() after the last
statement in main().

All devices

Nothing

disable interrupts (INT GLOBAL) ;

enable Interrupt(INT EiT);

clear Interrupt(); N

sleep (SLEEP FULL); //sleep until an INT EXT interrupt
//after INT:EXT wake-up, will resume operation from this point

ex_wakup.c

reset cpu()

271

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

spi_data is_in()
spi_data is_in2()

Syntax:

Parameters:
Returns:
Function:
Availability:
Requires:
Examples:

Example Files:
Also See:

result = spi_data_is_in()

result = spi_data_is_in2()

None

0 (FALSE) or 1 (TRUE)

Returns TRUE if data has been received over the SPI.

This function is only available on devices with SPI hardware.

Nothing

(!spi data is in() && input(PIN B2));
if(spi data is in())

data = spi read();

None

spi_read(), spi_write(), SPI Overview

spi_read() spi_read2()

Syntax:

Parameters:
Returns:
Function:

Availability:
Requires:
Examples:
Example
Files:

Also See:

272

value = spi_read (data)

value = spi_read2 (data)

data is optional and if included is an 8 bit int.

An 8 bit int

Return a value read by the SPI. If a value is passed to spi_read() the data will
be clocked out and the data received will be returned. If no data is ready,
spi_read() will wait for the data if A SLAVE or return the last DATA clocked in
from spi_write.

If this device is the master then either do a spi_write (data) followed by a
spi_read() or do a spi_read (data). These both do the same thing and will
generate a clock. If there is no data to send just do a SPI_READ(0) to get the
clock.

If this device is a slave then either call spi_read() to wait for the clock and data
or use spi_data_is_in() to determine if data is ready.

This function is only available on devices with SPI hardware.

Nothing

in data = spi read(out _data);

ex_spi.c

spi_data_is_in(), spi_write(), SPI Overview

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

spi_write() spi_write2()

Syntax:

Parameters:
Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

spi_write (value)

spi_write2 (value)

value is an 8 bit int

Nothing

Sends a byte out the SPI interface. This will cause 8 clocks to be generated.
This function will write the value out to the SPI. At the same time data is
clocked out data is clocked in and stored in a receive buffer. spi_read() may be
used to read the buffer.

This function is only available on devices with SPI hardware.

Nothing

spi write(data out);
data in = spi read();
ex_spi.c

spi_read(), spi_data _is_in(), SPI Overview

spi_xfer()

Syntax:

Parameters:

Returns:

Function:
Availability:
Requires:
Examples:

Example
Files:
Also See:

spi_xfer(data)

spi_xfer(stream, data)

spi_xfer(stream, data, bits)

result = spi_xfer(data)

result = spi_xfer(stream, data)

result = spi_xfer(stream, data, bits)

data is the variable or constant to transfer via SPI. The pin used to transfer
data is defined in the DO=pin option in #use spi. stream is the SPI stream to
use as defined in the STREAM=name option in #USE SPI. bits is how many
bits of data will be transferred.

The data read in from the SPI. The pin used to transfer result is defined in the
Dl=pin option in #USE SPI.

Transfers data to and reads data from an SPI device.

All devices with SPI support.

#USE SPI

int i = 34;

spi xfer(i);

// transfers the number 34 via SPI

int trans = 34, res;

res = spi xfer (trans);

// transfers the number 34 via SPI

// also reads the number coming in from SPI

None

#USE SPI
273

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

sprintf()

Syntax:

Parameters:

Returns:
Function:

Availability:
Requires:
Examples:

Example Files:

Also See:

sqrt()
Syntax:
Parameters:
Returns:
Function:

Availability:

274

sprintf(string, cstring, values...);

bytes=sprintf(string, cstring, values...)

string is an array of characters.

cstring is a constant string or an array of characters null terminated. Values
are a list of variables separated by commas. Note that format specifies do not
work in ram band strings.

Bytes is the number of bytes written to string.

This function operates like printf() except that the output is placed into the
specified string. The output string will be terminated with a null. No checking is
done to ensure the string is large enough for the data. See printf() for details
on formatting.

All devices.

Nothing
char mystring[20];
long mylong;

mylong=1234;

sprintf (mystring, "<%$1lu>",mylong) ;
// mystring now has:

// <1234>\0

None

printf()

result = sqrt (value)
value is any float type
Returns a floating point value with a precision equal to value

Computes the non-negative square root of the float value x. If the argument is
negative, the behavior is undefined.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Domain error occurs in the following cases:
sqrt: when the argument is negative
All devices.

Standard C Include Files

Requires: #INCLUDE <math.h>

Examples: distance = sqgrt(pow ((x1-x2),2)+pow((yl-y2),2));
Example None

Files:

Also See: None

srand()

Syntax: srand(n)

Parameters: n is the seed for a new sequence of pseudo-random numbers to be returned by
subsequent calls to rand.

Returns: No value.

Function: The srand() function uses the argument as a seed for a new sequence of
pseudo-random numbers to be returned by subsequent calls to rand. If srand() is
then called with same seed value, the sequence of random numbers shall be
repeated. If rand is called before any call to srand() have been made, the same
sequence shall be generated as when srand() is first called with a seed value of
1.

Availability: All devices.
Requires: #INCLUDE <STDLIB.H>

Examples: srand (10) ;
I=rand() ;

Example None
Files:
Also See: rand()

STANDARD STRING
FUNCTIONS() memchr()
memcmp() strcat()
strchr() strcmp() strcoll(
) strcspn() strerror()
275

TEST PCD

stricmp() strlen() striwr(

) strncat() strncmp()
strncpy() strpbrk()

strrchr() strspn() strstr()
strxfrm()

Syntax:

Parameters:

276

ptr=strcat (s1, s2)
ptr=strchr (s1, ¢)
ptr=strrchr (s1, c)
cresult=strcmp (s1, s2)
iresult=strncmp (s1, s2, n)
iresult=stricmp (s1, s2)
ptr=strncpy (s1, s2, n)
iresult=strcspn (s1, s2)
iresult=strspn (s1, s2)
iresult=strlen (s1)
ptr=striwr (s1)
ptr=strpbrk (s1, s2)
ptr=strstr (s1, s2)
ptr=strncat(s1,s2)
iresult=strcoll(s1,s2)

res=strxfrm(s1,s2,n)
iresult=memcmp(m1,m2,n)
ptr=memchr(m1,c,n)

ptr=strerror(errnum)

Concatenate s2 onto sl

Find c in s1 and return &s1[i]

Same but search in reverse

Compare sl to s2

Compare sl to s2 (n bytes)

Compare and ignore case

Copy up to n characters s2->s1

Count of initial chars in s1 not in s2

Count of initial chars in s1 also in s2

Number of characters in s1

Convert string to lower case

Search s1 for first char also in s2

Search for s2 in s1

Concatenates up to n bytes of s2 onto s1
Compares sl to s2, both interpreted as
appropriate to the current locale.

Transforms maximum of n characters of s2 and
places them in s1, such that strcmp(s1,s2) will
give the same result as strcoll(s1,s2)
Compare ml to m2 (n bytes)

Find c in first n characters of m1 and return
&ml]i]

Maps the error number in errnum to an error
message string. The parameters 'errnum' is an
unsigned 8 bit int. Returns a pointer to the
string.

s1 and s2 are pointers to an array of characters (or the name of an array). Note
that s1 and s2 MAY NOT BE A CONSTANT (like "hi").

n is a count of the maximum number of character to operate on.

c is a 8 bit character

m1 and m2 are pointers to memory.

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:
Also See:

strcat()

Standard C Include Files

ptr is a copy of the s1 pointer

iresult is an 8 bit int

result is -1 (less than), 0 (equal) or 1 (greater than)
res is an integer.

Functions are identified above.
All devices.
#include <string.h>

char stringl[10], string2([10];

strcpy(stringl,"hi ");
strcpy(string2, "there");
strcat (stringl,string2);

printf ("Length is %ul\r\n", strlen(stringl));
// Will print 8

ex_str.c

strcpy(), strtok()

See: STANDARD STRING FUNCTIONS()

strchr()

See: STANDARD STRING FUNCTIONS()

stremp()
See: STANDARD STRING FUNCTIONS()

strcoll()
See: STANDARD STRING FUNCTIONS()

277

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

strepy() strcopy()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

strcpy (dest, src)
strcopy (dest, src)

dest is a pointer to a RAM array of characters.
src may be either a pointer to a RAM array of characters or it may be a
constant string.

undefined

Copies a constant or RAM string to a RAM string. Strings are terminated with
ao.

All devices.
Nothing

char string[10], string2[10];

strcpy (string, "Hi There");

strcpy(string2,string);
ex_str.c

Strxxxx()

STRCSPN()

See: STANDARD STRING FUNCTIONS()

strlen()

See: STANDARD STRING FUNCTIONS()

striwr()

See: STANDARD STRING FUNCTIONS()

278

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

strncat()
See: STANDARD STRING FUNCTIONS()

strncmp()
See: STANDARD STRING FUNCTIONS()

strncpy()

See: STANDARD STRING FUNCTIONS()

strpbrk()

See: STANDARD STRING FUNCTIONS()

strrchr()

See: STANDARD STRING FUNCTIONS()

strespn()
See: STANDARD STRING FUNCTIONS()

strstr()

See: STANDARD STRING FUNCTIONS()

strtod() strtof() strtof48(

)

Syntax: result=strtod(nptr,& endptr)

result=strtof(nptr,& endptr)

Standard C Include Files

279

TEST PCD

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:
Also See:

strtok()

Syntax:

Parameters:

Returns:

Function:

280

result=strtof48(nptr,& endptr)
nptr and endptr are strings

strtod returns a double precision floating point number.

strtof returns a single precision floating point number.

strtof48 returns a extended precision floating point number.

returns the converted value in result, if any. If no conversion could be performed,
zero is returned.

The strtod function converts the initial portion of the string pointed to by nptr to a
float representation. The part of the string after conversion is stored in the object
pointed to endptr, provided that endptr is not a null pointer. If nptr is empty or
does not have the expected form, no conversion is performed and the value of
nptr is stored in the object pointed to by endptr, provided endptr is not a null
pointer.

All devices.
#INCLUDE <stdlib.h>

double result;

char str[l12]="123.45hello";

char *ptr;

result=strtod(str, &ptr);

//result is 123.45 and ptr is "hello"

None

strtol(), strtoul()

ptr = strtok(s1, s2)
s1 and s2 are pointers to an array of characters (or the name of an array). Note

that s1 and s2 MAY NOT BE A CONSTANT (like "hi"). s1 may be O to indicate a
continue operation.

ptr points to a characterin sl oris 0

Finds next token in s1 delimited by a character from separator string s2 (which
can be different from call to call), and returns pointer to it.

First call starts at beginning of s1 searching for the first character NOT contained
in s2 and returns null if there is none are found.

Availability:
Requires:

Examples:

Example
Files:
Also See:

strtol()

Syntax:
Parameters:

Returns:

Function:

Standard C Include Files

If none are found, it is the start of first token (return value). Function then
searches from there for a character contained in s2.

If none are found, current token extends to the end of s1, and subsequent
searches for a token will return null.

If one is found, it is overwritten by "\0', which terminates current token. Function
saves pointer to following character from which next search will start.

Each subsequent call, with 0 as first argument, starts searching from the saved
pointer.

All devices.
#INCLUDE <string.h>

char string[30], term([3], *ptr;

strcpy(string, "one, two, three;");

strcpy (term, ", ;")
ptr = strtok(string, term);
while (ptr!=0) {

puts (ptr) ;

ptr = strtok(0, term);
}
// Prints:
one
two
three

ex_str.c

Strxxxx(), strecpy()

result=strtol(nptr,& endptr, base)
nptr and endptr are strings and base is an integer

result is a signed long int.
returns the converted value in result , if any. If no conversion could be performed,
zero is returned.

The strtol function converts the initial portion of the string pointed to by nptr to a
signed long int representation in some radix determined by the value of base.

281

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

TEST PCD

The part of the string after conversion is stored in the object pointed to endptr,
provided that endptr is not a null pointer. If nptr is empty or does not have the
expected form, no conversion is performed and the value of nptr is stored in the
object pointed to by endptr, provided endptr is not a null pointer.

Availability: All devices.

Requires: #INCLUDE <stdlib.h>

Examples: signed long result;
char str[9]="123hello";
char *ptr;
result=strtol (str, &ptr,10);

//result is 123 and ptr is "hello"

Example None

Files:

Also See: strtod(), strtoul()

strtoul()

Syntax: result=strtoul(nptr,endptr, base)

Parameters: nptr and endptr are strings pointers and base is an integer 2-36.

Returns: result is an unsigned long int.
returns the converted value in result, if any. If no conversion could be performed,
zero is returned.

Function: The strtoul function converts the initial portion of the string pointed to by nptr to a
long int representation in some radix determined by the value of base. The part of
the string after conversion is stored in the object pointed to endptr, provided that
endptr is not a null pointer. If nptr is empty or does not have the expected form, no
conversion is performed and the value of nptr is stored in the object pointed to by
endptr, provided endptr is not a null pointer.

Availability: All devices.

Requires: STDLIB.H must be included

Examples: long result;
char str[9]="123hello";
char *ptr;
result=strtoul (str, &ptr,10);

//result is 123 and ptr is "hello"

Example None

Files:

Also See: strtol(), strtod()

282

Standard C Include Files

strxfrm()
See: STANDARD STRING FUNCTIONS()

swap()
Syntax: swap (lvalue)
result = swap(lvalue)
Parameters: Ivalue is a byte variable
Returns: A byte
Function: Swaps the upper nibble with the lower nibble of the specified byte. This is the
same as:
byte = (byte << 4) | (byte >> 4);
Availability: All devices.
Requires: Nothing
Examples: x=0x45;
swap (x) ;
//x now 1s 0x54
int x = 0x42;
int result;
result = swap(x);
// result is 0x24;
Example None
Files:
Also See: rotate right(), rotate_left()

tolower() toupper()

Syntax: result = tolower (cvalue)
result = toupper (cvalue)
Parameters: cvalue is a character
Returns: An 8 bit character
Function: These functions change the case of letters in the alphabet.

TOLOWER(X) will return 'a"..'z' for X in 'A'.."Z" and all other characters are
283

TEST PCD

unchanged. TOUPPER(X) will return ‘A'.."Z' for X in 'a'..'z" and all other
characters are unchanged.

Availability: All devices.
Requires: Nothing
Examples: switch (toupper(getc())) {
case 'R' : read cmd(); break;
case 'W' : write cmd(); break;
case 'Q' : done=TRUE; break;
}
Example ex_str.c
Files:
Also See: None
touchpad_getc()
Syntax: input = TOUCHPAD_GETC();
Parameters: None
Returns: char (returns corresponding ASCII number is “input” declared as int)
Function: Actively waits for firmware to signal that a pre-declared Capacitive Sensing
Module (CSM) pin is active, then stores the pre-declared character value of that
pin in “input”.

Note: Until a CSM pin is read by firmware as active, this instruction will cause the
microcontroller to stall.

Availability: All PIC's with a CSM Module

Requires: #USE TOUCHPAD (options)

Exanuﬂes: //When the pad connected to PIN BO is activated, store the
letter 'A'

#USE TOUCHPAD (PIN BO='A'")
void main (void) {

char c;

enable interrupts (GLOBAL) ;

c = TOUCHPAD_ GETC() ;
//will wait until one of declared pins is detected
//if PIN BO is pressed, c will get value 'A'
}

Example None
Files:
Also See: #USE TOUCHPAD, touchpad_state()

284

file:///C:/Documents%20and%20Settings/Meredith/Desktop/CCSC/javascript:shortcutlink.click()

Standard C Include Files

touchpad_hit()

Syntax:
Parameters:
Returns:
Function:

Availability:
Requires:
Examples:

Example
Files:
Also See:

value = TOUCHPAD_HIT(). iflt TOUCHPAD_HIT())

None

TRUE or FALSE

Returns TRUE if a Capacitive Sensing Module (CSM) key has been pressed. If
TRUE, then a call to touchpad_getc() will not cause the program to wait for a
key press.

All PIC's with a CSM Module

#USE TOUCHPAD (options)

// When the pad connected to PIN BO is activated, store the
letter 'A'

#USE TOUCHPAD (PIN BO='A')
void main (void) {
char c;
enable interrupts (GLOBAL) ;

while (TRUE) {
if (TOUCHPAD HIT())
//wait until key on PIN BO is pressed
c = TOUCHPAD GETC(); //get key that was pressed
} //c will get value 'A'
}

None

#USE TOUCHPAD (), touchpad_state(), touchpad getc()

touchpad_state()

Syntax:
Parameters:
Returns:

Function:

Availability:

TOUCHPAD_STATE (state);
state is a literal 0, 1, or 2.
None

Sets the current state of the touchpad connected to the Capacitive Sensing
Module (CSM). The state can be one of the following three values:

0 : Normal state
1 : Calibrates, then enters normal state
2 : Test mode, data from each key is collected in the int1l6 array TOUCHDATA

Note: If the state is set to 1 while a key is being pressed, the touchpad will not
calibrate properly.

All PIC's with a CSM Module
285

TEST PCD

Requires: #USE TOUCHPAD (options)

Examples: #USE TOUCHPAD (THRESHOLD=5, PIN D5='5', PIN BO='C')

void main (void) {

char c;

TOUCHPAD STATE (1) ; //calibrates, then enters normal
state

enable interrupts (GLOBAL) ;

while (1) {

c = TOUCHPAD GETC () ;
//will wait until one of declared pins is detected

//if PIN BO is pressed, ¢ will get value 'C'

} //if PIN D5 is pressed, ¢ will get value '5'
Example None
Files:
Also See: #USE TOUCHPAD, touchpad getc(), touchpad_hit()
va_arg()
Syntax: va_arg(argptr, type)
Parameters: argptr is a special argument pointer of type va_list

type — This is data type like int or char.

Returns: The first call to va_arg after va_start return the value of the parameters after
that specified by the last parameter. Successive invocations return the values
of the remaining arguments in succession.

Function: The function will return the next argument every time it is called.
Availability: All devices.

Requires: #INCLUDE <stdarg.h>

Examples: int foo(int num, ...)

{
int sum = 0;
int 1i;
va list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr
for (i=0; i<num; i++)
sum = sum + va_arg(argptr, int);
va_end(argptr); // end variable processing
return sum;

}

Example None
Files:
Also See: nargs(), va_end(), va_start()

286

Standard C Include Files

va_end()

Syntax:

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

va_start

Syntax:

Parameters:

Returns:

Function:

va_end(argptr)

argptr is a special argument pointer of type va_list.
None

A call to the macro will end variable processing. This will facillitate a normal
return from the function whose variable argument list was referred to by the
expansion of va_start().

All devices.
#INCLUDE <stdarg.h>

int foo(int num, ...)
{
int sum = 0;
int i;
va_ list argptr; // create special argument pointer
va_ start (argptr,num); // initialize argptr
for (1i=0; i<num; i++)
sum = sum + va_arg(argptr, int);
va_end(argptr); // end variable processing
return sum;

}
None

nargs(), va_start(), va_arg()

va_start(argptr, variable)

argptr is a special argument pointer of type va_list
variable — The second parameter to va_start() is the name of the last

parameter before the variable-argument list.
None

The function will initialize the argptr using a call to the macro va_start().

287

TEST PCD

Availability:
Requires:

Examples:

Example Files:

Also See:

All devices.
#INCLUDE <stdarg.h>

int foo(int num, ...)
{
int sum = 0;
int i;
va_ list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr
for (i=0; i<num; i++)
sum = sum + va_ arg(argptr, int);
va_end(argptr); // end variable processing
return sum;

}
None

nargs(), va_start(), va_arg()

write_configuration_mem

ory()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example Files:

Also See:

288

write_configuration_memory (dataptr, count)

dataptr: pointer to one or more bytes
count: a 8 bit integer

undefined

Erases all fuses and writes count bytes from the dataptr to the configuration
memory.

All PIC18 flash devices
Nothing

int datal6];
write configuration memory (data, 6)

None

write_program_memory(), Configuration Memory Overview

Standard C Include Files

write_eeprom()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

write_eeprom (address, value)
write_eeprom (address , pointer , N)

address is the 0 based starting location of the EEPROM write
N specifies the number of EEPROM bytes to write

value is a constant or variable to write to EEPROM

pointer is a pointer to location to data to be written to EEPROM

undefined

This function will write the specified value to the given address of EEPROM. If
pointers are used than the function will write n bytes of data from the pointer to
EEPROM starting at the value of address.

In order to allow interrupts to occur while using the write operation, use the
#DEVICE option WRITE_EEPROM = NOINT. This will allow interrupts to occur
while the write_eeprom() operations is polling the done bit to check if the write
operations has completed. Can be used as long as no EEPROM operations are
performed during an ISR.

This function is only available on devices with supporting hardware on chip.
Nothing

#define LAST VOLUME 10 // Location in EEPROM

volume+t+;
write eeprom(LAST VOLUME,volume) ;

None

read_eeprom(), write_program_eeprom(), read_program_eeprom(), data
Eeprom Overview

write_extended _ram()

Syntax:
Parameters:

write_extended_ram (page,address,data,count);

page — the page in extended RAM to write to

address — the address on the selected page to start writing to
data — pointer to the data to be written

count — the number of bytes to write (0-32768)

289

TEST PCD

Returns: undefined

Function: To write data to the extended RAM of the PIC.
Availability: On devices with more then 30K of RAM.
Requires: Nothing

Examples: unsigned int8 datal[8] =

{0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08};

write extended ram(1,0x0000,data,8);

Example Files: None
Also See: read _extended ram(), Extended RAM Overview

write_program_memory/()

Syntax: write_program_memory(address, dataptr, count);

Parameters: address is 32 bits .
dataptr is a pointer to one or more bytes
count is a 16 bit integer on PIC16 and 16-bit for PIC18

Returns: undefined

Function: Writes count bytes to program memory from dataptr to address. This function is
most effective when count is a multiple of FLASH_WRITE_SIZE, but count
needs to be a multiple of four. Whenever this function is about to write to a
location that is a multiple of FLASH_ERASE_SIZE then an erase is performed
on the whole block. Due to the 24 bit instruction length on PCD parts, every
fourth byte of data is ignored. Fill the ignored bytes with 0x00.

See Program EEPROM Overview for more information on program memory

access
Availability: Only devices that allow writes to program memory.
Requires: Nothing

Examples: for (i=0x1000;i<=0x1fff;i++) {

value=read adc();
write program memory (i, value, 2);
delay ms (1000) ;

}

int8 write data[4] = {0x10,0x20,0x30,0x00};
write program memory (0x2000, write data, 4);
Example None

Files:

290

Standard C Include Files

STANDARD C INCLUDE FILES

o ol 3
—o-oh—l C Compiler
errno.h
errno.h
EDOM Domain error value
ERANGE Range error value
errno error value
float.h
float.h
FLT _RADIX: Radix of the exponent representation
FLT _MANT_DIG: Number of base digits in the floating point significant
FLT_DIG: Number of decimal digits, g, such that any floating point number
with q decimal digits can be rounded into a floating point
number with p radix b digits and back again without change to
the q decimal digits.
FLT_MIN_EXP: Minimum negative integer such that FLT_RADIX raised to that

FLT_MIN_10_EXP:

FLT_MAX_EXP:

FLT_MAX_10_EXP:

FLT_MAX:
FLT_EPSILON:

FLT_MIN:
DBL_MANT_DIG:
DBL_DIG:
DBL_MIN_EXP:

DBL_MIN_10_EXP:

DBL_MAX_EXP:

power minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in
the range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.
Maximum negative integer such that 10 raised to that power is
in the range representable finite floating-point numbers.
Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that
is representable in the given floating point type.

Minimum normalized positive floating point number

Number of base digits in the double significant

Number of decimal digits, g, such that any double number with q
decimal digits can be rounded into a double number with p radix
b digits and back again without change to the g decimal digits.
Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized double number.

Minimum negative integer such that 10 raised to that power is in
the range of normalized double numbers.

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite double number.

201

TEST PCD

DBL_MAX_10_EXP:

DBL_MAX:
DBL_EPSILON:

DBL_MIN:

LDBL_MANT_DIG:
LDBL_DIG:

LDBL_MIN_EXP:
LDBL_MIN_10_EXP:
LDBL_MAX_EXP:
LDBL_MAX_10_EXP:

LDBL_MAX:
LDBL_EPSILON:

Maximum negative integer such that 10 raised to that power is
in the range of representable finite double numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that
is representable in the given floating point type.

Minimum normalized positive double number.

Number of base digits in the floating point significant

Number of decimal digits, g, such that any floating point number
with g decimal digits can be rounded into a floating point
number with p radix b digits and back again without change to
the g decimal digits.

Minimum negative integer such that FLT_RADIX raised to that
power minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in
the range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that
power minus 1 is a representable finite floating-point number.
Maximum negative integer such that 10 raised to that power is
in the range of representable finite floating-point numbers.
Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that
is representable in the given floating point type.

LDBL_MIN: Minimum normalized positive floating point number.
limits.h
limits.h
CHAR_BIT: Number of bits for the smallest object that is not a bit_field.
SCHAR_MIN: Minimum value for an object of type signed char
SCHAR_MAX: Maximum value for an object of type signed char
UCHAR_MAX: Maximum value for an object of type unsigned char
CHAR_MIN: Minimum value for an object of type char(unsigned)
CHAR_MAX: Maximum value for an object of type char(unsigned)
MB_LEN_MAX: Maximum number of bytes in a multibyte character.
SHRT_MIN: Minimum value for an object of type short int
SHRT_MAX: Maximum value for an object of type short int
USHRT_MAX: Maximum value for an object of type unsigned short int
INT_MIN: Minimum value for an object of type signed int
INT_MAX: Maximum value for an object of type signed int
UINT_MAX: Maximum value for an object of type unsigned int
LONG_MIN: Minimum value for an object of type signed long int
LONG_MAX: Maximum value for an object of type signed long int
ULONG MAX: Maximum value for an object of type unsigned long int

292

Standard C Include Files

locale.h

locale.h

locale.h (Localization not supported)

Iconv localization structure

SETLOCALE() returns null

LOCALCONV() returns clocale
setjimp.h
setjmp.h
jmp_buf: An array used by the following functions
setjmp: Marks a return point for the next longjmp
longjmp: Jumps to the last marked point

stddef.h

stddef.h
ptrdiff_t:
size_t:
wchar_t
NULL

The basic type of a pointer

The type of the sizeof operator (int)

The type of the largest character set supported (char) (8 bits)
A null pointer (0)

stdio.h

stdio.h

stderr The standard error s stream (USE RS232 specified as stream or the
first USE RS232)

stdout The standard output stream (USE RS232 specified as stream last
USE RS232)

stdin The standard input s stream (USE RS232 specified as stream last

USE RS232)

stdlib.h

stdlib.h

div_t structure type that contains two signed integers (quot and rem).
Idiv_t structure type that contains two signed longs (quot and rem
EXIT_FAILURE returns 1

293

TEST PCD

EXIT_SUCCESS
RAND_MAX-
MBCUR_MAX-
SYSTEM()

Multibyte character and string functions:

MBLEN()
MBTOWC()
WCTOMB()
MBSTOWCS()
WBSTOMBS()

returns O

1

Returns O(not supported)
Multibyte characters not supported
Returns the length of the string.
Returns 1.

Returns 1.

Returns length of string.

Returns length of string.

Stdlib.h functions included just for
compliance with ANSI C.

294

ERROR MESSAGES

Vol
oo

Compiler Error Messages

ENDIF with no corresponding #IF

Compiler found a #ENDIF directive without a corresponding #IF.

#ERROR

A #DEVICE required before this line

The compiler requires a #device before it encounters any statement or compiler directive that may
cause it to generate code. In general #defines may appear before a #device but not much more.

C Compiler

ADDRESSMOD function definition is incorrect

ADDRESSMOD range is invalid

A numeric expression must appear here

Some C expression (like 123, A or B+C) must appear at this spot in the code. Some expression
that will evaluate to a value.

Arrays of bits are not permitted

Arrays may not be of SHORT INT. Arrays of Records are permitted but the record size is always
rounded up to the next byte boundary.

Assignment invalid: value is READ ONLY

Attempt to create a pointer to a constant

Constant tables are implemented as functions. Pointers cannot be created to functions. For
example CHAR CONST MSG[9]={"HI THERE"}; is permitted, however you cannot use &MSG. You
can only reference MSG with subscripts such as MSGJi] and in some function calls such as Printf
and STRCPY.

Attributes used may only be applied to a function (INLINE or SEPARATE)

An attempt was made to apply #INLINE or #SEPARATE to something other than a function.

Bad ASM syntax

Bad expression syntax

This is a generic error message. It covers all incorrect syntax.

Baud rate out of range

The compiler could not create code for the specified baud rate. If the internal UART is being used
the combination of the clock and the UART capabilities could not get a baud rate within 3% of the
requested value. If the built in UART is not being used then the clock will not permit the indicated
baud rate. For fast baud rates, a faster clock will be required.

BIT variable not permitted here

Addresses cannot be created to bits. For example &X is not permitted if X is a SHORT INT.

Branch out of range
Cannot change device type this far into the code

295

TEST PCD

The #DEVICE is not permitted after code is generated that is device specific. Move the #DEVICE
to an area before code is generated.

Character constant constructed incorrectly

Generally this is due to too many characters within the single quotes. For example 'ab' is an error
as is \nr'. The backslash is permitted provided the result is a single character such as \010' or \n".
Constant out of the valid range

This will usually occur in inline assembly where a constant must be within a particular range and it
is not. For example BTFSC 3,9 would cause this error since the second operand must be from 0-8.

Data item too big

Define expansion is too large

A fully expanded DEFINE must be less than 255 characters. Check to be sure the DEFINE is not
recursively defined.

Define syntax error

This is usually caused by a missing or misplaced (or) within a define.

Demo period has expired

Please contact CCS to purchase a licensed copy.

www.ccsinfo.com/pricing

Different levels of indirection

This is caused by a INLINE function with a reference parameter being called with a parameter that
is not a variable. Usually calling with a constant causes this.

Divide by zero

An attempt was made to divide by zero at compile time using constants.

Duplicate case value

Two cases in a switch statement have the same value.

Duplicate DEFAULT statements

The DEFAULT statement within a SWITCH may only appear once in each SWITCH. This error
indicates a second DEFAULT was encountered.

Duplicate function

A function has already been defined with this name. Remember that the compiler is not case
sensitive unless a #CASE is used.

Duplicate Interrupt Procedure

Only one function may be attached to each interrupt level. For example the #INT_RB may only
appear once in each program.

Element is not a member

A field of a record identified by the compiler is not actually in the record. Check the identifier
spelling.

ELSE with no corresponding IF

Compiler found an ELSE statement without a corresponding IF. Make sure the ELSE statement
always match with the previous IF statement.

End of file while within define definition

The end of the source file was encountered while still expanding a define. Check for a missing).
End of source file reached without closing comment */ symbol

The end of the source file has been reached and a comment (started with /*) is still in effect. The */
is missing.

type are INT and CHAR.

296

http://www.ccsinfo.com/content.php?page=Purchasing1

Error Messages

Expect ;

Expect }

Expect CASE

Expect comma

Expect WHILE

Expecting *

Expecting :

Expecting <

Expecting =

Expecting >

Expecting a (

Expecting a, or)

Expecting a, or }

Expecting a .

Expecting a ; or,

Expecting a ; or {

Expecting a close paren

Expecting a declaration

Expecting a structure/union

Expecting a variable

Expecting an =

Expecting a]

Expecting a {

Expecting an array

Expecting an identifier

Expecting function name

Expecting an opcode mnemonic

This must be a Microchip mnemonic such as MOVLW or BTFSC.
Expecting LVALUE such as a variable name or * expression
This error will occur when a constant is used where a variable should be. For example 4=5; will
give this error.

Expecting a basic type

Examples of a basic type are INT and CHAR.

Expression must be a constant or simple variable

The indicated expression must evaluate to a constant at compile time. For example 5*3+1 is
permitted but 5*x+1 where X is a INT is not permitted. If X were a DEFINE that had a constant
value then it is permitted.

Expression must evaluate to a constant

The indicated expression must evaluate to a constant at compile time. For example 5*3+1 is
permitted but 5*x+1 where X is a INT is not permitted. If X were a DEFINE that had a constant
value then it is permitted.

Expression too complex

This expression has generated too much code for the compiler to handle for a single expression.
This is very rare but if it happens, break the expression up into smaller parts.

Too many assembly lines are being generated for a single C statement. Contact CCS to increase
the internal limits.

297

TEST PCD

EXTERNal symbol not found

EXTERNal symbol type mis-match

Extra characters on preprocessor command line

Characters are appearing after a preprocessor directive that do not apply to that directive.
Preprocessor commands own the entire line unlike the normal C syntax. For example the
following is an error:

#PRAGMA DEVICE <PIC16C74> main() { int x; x=1;}

File cannot be opened

Check the filename and the current path. The file could not be opened.

File cannot be opened for write

The operating system would not allow the compiler to create one of the output files. Make sure the
file is not marked READ ONLY and that the compiler process has write privileges to the directory
and file.

Filename must start with " or <

The correct syntax of a #include is one of the following two formats:

#include "filename.ext"

#include <filename.ext>

This error indicates neither a " or < was found after #include.

Filename must terminate with " or; msg:"’

The filename specified in a #include must terminate with a " if it starts with a . It must terminate
with a > if it starts with a <.

Floating-point numbers not supported for this operation

A floating-point number is not permitted in the operation near the error. For example, ++F where F
is a float is not allowed.

Function definition different from previous definition

This is a mis-match between a function prototype and a function definition. Be sure that if a
#INLINE or #SEPARATE are used that they appear for both the prototype and definition. These
directives are treated much like a type specifier.

Function used but not defined

The indicated function had a prototype but was never defined in the program.
Identifier is already used in this scope

An attempt was made to define a new identifier that has already been defined.
lllegal C character in input file

A bad character is in the source file. Try deleting the line and re-typing it.

Import error

Improper use of a function identifier

Function identifiers may only be used to call a function. An attempt was made to otherwise
reference a function. A function identifier should have a (after it.

Incorrectly constructed label

This may be an improperly terminated expression followed by a label. For example:
x=5+

MPLAB:

Initialization of unions is not permitted

Structures can be initialized with an initial value but UNIONS cannot be.

Internal compiler limit reached

298

Error Messages

The program is using too much of something. An internal compiler limit was reached. Contact
CCS and the limit may be able to be expanded.

Internal Error - Contact CCS

This error indicates the compiler detected an internal inconsistency. This is not an error with the
source code; although, something in the source code has triggered the internal error. This problem
can usually be quickly corrected by sending the source files to CCS so the problem can be re-
created and corrected.

In the meantime if the error was on a particular line, look for another way to perform the same
operation. The error was probably caused by the syntax of the identified statement. If the error
was the last line of the code, the problem was in linking. Look at the call tree for something out of
the ordinary.

Interrupt handler uses too much stack

Too many stack locations are being used by an interrupt handler.

Invalid conversion from LONG INT to INT

In this case, a LONG INT cannot be converted to an INT. You can type cast the LONG INT to
perform a truncation. For example:

I = INT(LI);

Invalid interrupt directive

Invalid parameters to built in function

Built-in shift and rotate functions (such as SHIFT_LEFT) require an expression that evaluates to a
constant to specify the number of bytes.

Invalid Pre-Processor directive

The compiler does not know the preprocessor directive. This is the identifier in one of the following
two places:

FRRKXKK

#PRAGMA XXXXX

Invalid ORG range

The end address must be greater than or equal to the start address. The range may not overlap
another range. The range may not include locations 0-3. If only one address is specified it must
match the start address of a previous #org.

Invalid overload function

Invalid type conversion

Label not permitted here

Library in USE not found

The identifier after the USE is not one of the pre-defined libraries for the compiler. Check the
spelling.

Linker Error: "%s" already defined in "%s"

Linker Error: ("%s'

Linker Error: Canont allocate memory for the section "%s" in the module "%s", because it overlaps
with other sections.

Linker Error: Cannot find unique match for symbol "%s"

Linker Error: Cannot open file "%s"

Linker Error: COFF file "%s" is corrupt; recompile module.

Linker Error: Not enough memory in the target to reallocate the section "%s" in the module "%s".
Linker Error: Section "%s" is found in the modules "%s" and "%s" with different section types.
Linker Error: Unknown error, contact CCS support.

Linker Error: Unresolved external symbol "%s" inside the module "%s".

299

TEST PCD

Linker option no compatible with prior options.

Linker Warning: Section "%s" in module "%s" is declared as shared but there is no shared memory
in the target chip. The shared flag is ignored.

Linker option not compatible with prior options

Conflicting linker options are specified. For example using both the EXCEPT= and ONLY= options
in the same directive is not legal.

LVALUE required

This error will occur when a constant is used where a variable should be. For example 4=5; will
give this error.

Macro identifier requires parameters

A #DEFINE identifier is being used but no parameters were specified, as required. For example:
#define min(x,y) ((x<y)?x:y)

When called MIN must have a (--,--) after it such as:

r=min (value, 6);

Macro is defined recursively

A C macro has been defined in such a way as to cause a recursive call to itself.

Missing #ENDIF

A #IF was found without a corresponding #ENDIF.

Missing or invalid .CRG file

The user registration file(s) are not part of the download software. In order for the software to run
the files must be in the same directory as the .EXE files. These files are on the original diskette,
CD ROM or e-mail in a non-compressed format. You need only copy them to the .EXE directory.
There is one .REG file for each compiler (PCB.REG, PCM.REG and PCH.REG).

More info:

Must have a #USE DELAY before this #USE

Must have a #USE DELAY before a #USE RS232

The RS232 library uses the DELAY library. You must have a #USE DELAY before you can do a
#USE RS232.

No errors

The program has successfully compiled and all requested output files have been created.

No MAIN() function found

All programs are required to have one function with the name main().

No overload function matches

No valid assignment made to function pointer

Not enough RAM for all variables

The program requires more RAM than is available. The symbol map shows variables allocated.
The call tree shows the RAM used by each function. Additional RAM usage can be obtained by
breaking larger functions into smaller ones and splitting the RAM between them.

For example, a function A may perform a series of operations and have 20 local variables declared.
Upon analysis, it may be determined that there are two main parts to the calculations and many
variables are not shared between the parts. A function B may be defined with 7 local variables and
a function C may be defined with 7 local variables. Function A now calls B and C and combines
the results and now may only need 6 variables. The savings are accomplished because B and C
are not executing at the same time and the same real memory locations will be used for their 6

300

Error Messages

variables (just not at the same time). The compiler will allocate only 13 locations for the group of
functions A, B, C where 20 were required before to perform the same operation.

Number of bits is out of range

For a count of bits, such as in a structure definition, this must be 1-8. For a bit number
specification, such as in the #BIT, the number must be 0-7.

Only integers are supported for this operation

Option invalid

Out of ROM, A segment or the program is too large

A function and all of the INLINE functions it calls must fit into one segment (a hardware code page).
For example, on the PIC16 chip a code page is 512 instructions. If a program has only one
function and that function is 600 instructions long, you will get this error even though the chip has
plenty of ROM left. The function needs to be split into at least two smaller functions. Even after
this is done, this error may occur since the new function may be only called once and the linker
might automatically INLINE it. This is easily determined by reviewing the call tree. If this error is
caused by too many functions being automatically INLINED by the linker, simply add a
#SEPARATE before a function to force the function to be SEPARATE. Separate functions can be
allocated on any page that has room. The best way to understand the cause of this error is to
review the call tree.

Parameters must be located in RAM

Parameters not permitted

An identifier that is not a function or preprocessor macro can not have a ' (' after it.

Pointers to bits are not permitted

Addresses cannot be created to bits. For example, &X is not permitted if X is a SHORT INT.
Previous identifier must be a pointer

A -> may only be used after a pointer to a structure. It cannot be used on a structure itself or other
kind of variable.

Printf format type is invalid

An unknown character is after the % in a printf. Check the printf reference for valid formats.
Printf format (%) invalid

A bad format combination was used. For example, %lc.

Printf variable count (%) does not match actual count

The number of % format indicators in the printf does not match the actual number of variables that
follow. Remember in order to print a single %, you must use %%.

Recursion not permitted

The linker will not allow recursive function calls. A function may not call itself and it may not call
any other function that will eventually re-call it.

Recursively defined structures not permitted

A structure may not contain an instance of itself.

Reference arrays are not permitted

A reference parameter may not refer to an array.

Return not allowed in void function

A return statement may not have a value if the function is void.

RTOS call only allowed inside task functions

Selected part does not have ICD debug capability
301

TEST PCD

STDOUT not defined (may be missing #RS 232)

An attempt was made to use a I/O function such as printf when no default I/O stream has been
established. Add a #USE RS232 to define a I/O stream.

Stream must be a constant in the valid range

1/0 functions like fputc, fgetc require a stream identifier that was defined in a #USE RS232. This
identifier must appear exactly as it does when it was defined. Be sure it has not been redefined with
a #define.

String too long

Structure field name required

A structure is being used in a place where a field of the structure must appear. Change to the form
s.f where s is the structure name and f is a field name.

Structures and UNIONS cannot be parameters (use * or &)

A structure may not be passed by value. Pass a pointer to the structure using &.

Subscript out of range

A subscript to a RAM array must be at least 1 and not more than 128 elements. Note that large
arrays might not fit in a bank. ROM arrays may not occupy more than 256 locations.

This linker function is not available in this compiler version.

Some linker functions are only available if the PCW or PCWH product is installed.

This type cannot be qualified with this qualifier

Check the qualifiers. Be sure to look on previous lines. An example of this error is:

VOID X;

Too many array subscripts

Arrays are limited to 5 dimensions.

Too many constant structures to fit into available space

Available space depends on the chip. Some chips only allow constant structures in certain places.
Look at the last calling tree to evaluate space usage. Constant structures will appear as functions
with a @CONST at the beginning of the name.

Too many elements in an ENUM

A max of 256 elements are allowed in an ENUM.

Too many fast interrupt handlers have been defined

Too many fast interrupt handlers have been identified

Too many nested #INCLUDEs

No more than 10 include files may be open at a time.

Too many parameters

More parameters have been given to a function than the function was defined with.
Too many subscripts

More subscripts have been given to an array than the array was defined with.
Type is not defined

The specified type is used but not defined in the program. Check the spelling.
Type specification not valid for a function

This function has a type specifier that is not meaningful to a function.

Undefined identifier

Undefined label that was used in a GOTO

There was a GOTO LABEL but LABEL was never encountered within the required scope. A GOTO
cannot jump outside a function.

Unknown device type

302

Error Messages

A #DEVICE contained an unknown device. The center letters of a device are always C regardless
of the actual part in use. For example, use PIC16C74 not PIC16RC74. Be sure the correct
compiler is being used for the indicated device. See #DEVICE for more information.

Unknown keyword in #FUSES

Check the keyword spelling against the description under #FUSES.

Unknown linker keyword

The keyword used in a linker directive is not understood.

Unknown type

The specified type is used but not defined in the program. Check the spelling.

User aborted compilation

USE parameter invalid

One of the parameters to a USE library is not valid for the current environment.

USE parameter value is out of range

One of the values for a parameter to the USE library is not valid for the current environment.

Variable never used

Variable of this data type is never greater than this constant

303

COMPILER WARNING MESSAGES

MR
L

Compiler Warning
Messages

#error/warning
Assignment inside relational expression
Although legal it is a common error to do something like if(a=b) when it was intended to do if(a==b).

C Compiler

Assignment to enum is not of the correct type.
This warning indicates there may be such a typo in this line:
Assignment to enum is not of the correct type
If a variable is declared as a ENUM it is best to assign to the variables only elements of the enum.
For example:
enum colors {RED,GREEN,BLUE} color;

color = GREEN; // OK

color 1; // Warning 209

color = (colors)l; //OK
Code has no effect
The compiler can not discern any effect this source code could have on the generated code. Some
examples:

1;
a==b;
1,2,3;

Condition always FALSE
This error when it has been determined at compile time that a relational expression will never be
true. For example:

int x;

if(x>>9)
Condition always TRUE
This error when it has been determined at compile time that a relational expression will never be
false. For example:

#define PIN Al 41

if (PIN_Al) // Intended was: if(input (PIN Al))

Function not void and does not return a value

Functions that are declared as returning a value should have a return statement with a value to be
returned. Be aware that in C only functions declared VOID are not intended to return a value. If
nothing is specified as a function return value "int" is assumed.

Duplicate #define

305

TEST PCD

The identifier in the #define has already been used in a previous #define. To redefine an identifier
use #UNDEF first. To prevent defines that may be included from multiple source do something
like:

#ifndef ID

#define ID text

#endif

Feature not supported

Function never called

Function not void and does not return a value.
Info:

Interrupt level changed

Interrupts disabled during call to prevent re-entrancy.

Linker Warning: "%s" already defined in object "%s"; second definition ignored.

Linker Warning: Address and size of section "%s" in module "%s" exceeds maximum range for this
processor. The section will be ignored.

Linker Warning: The module "%s" doesn't have a valid chip id. The module will be considered for
the target chip "%s".

Linker Warning: The target chip "%s" of the imported module "%s" doesn't match the target chip
"%s" of the source.

Linker Warning: Unsupported relocation type in module "%s".

Memory not available at requested location.
Operator precedence rules may not be as intended, use() to clarify
Some combinations of operators are confusing to some programmers. This warning is issued for
expressions where adding() would help to clarify the meaning. For example:
if(x << n + 1)
would be more universally understood when expressed:
if(x << (n + 1))
Option may be wrong
Structure passed by value
Structures are usually passed by reference to a function. This warning is generated if the structure
is being passed by value. This warning is not generated if the structure is less than 5 bytes. For
example:

void myfunct (mystruct sl) // Pass by value - Warning
myfunct(s2);
void myfunct(mystruct * sl) // Pass by reference - OK
myfunct (&s2);
void myfunct (mystruct & sl) // Pass by reference - OK

myfunct (s2);
Undefined identifier
The specified identifier is being used but has never been defined. Check the spelling.
Unprotected call in a #INT_GLOBAL
The interrupt function defined as #INT_GLOBAL is intended to be assembly language or very
simple C code. This error indicates the linker detected code that violated the standard memory

306

Compiler Warning Messages

allocation scheme. This may be caused when a C function is called from a #INT_GLOBAL
interrupt handler.
Unreachable code
Code included in the program is never executed. For example:
if (n==5)
goto dob5;
goto exit;
if (n==20) // No way to get to this line
return;
Unsigned variable is never less than zero
Unsigned variables are never less than 0. This warning indicates an attempt to check to see if an
unsigned variable is negative. For example the following will not work as intended:
int i;
for (i=10; i>=0; i--)

Variable assignment never used.
Variable of this data type is never greater than this constant
A variable is being compared to a constant. The maximum value of the variable could never be
larger than the constant. For example the following could never be true:
int x; // 8 bits, 0-255
if (x>300)

Variable never used
A variable has been declared and never referenced in the code.

Variable used before assignment is made.

307

COMMON QUESTIONS AND ANSWERS

Voo
e

How are type conversions
handled?

The compiler provides automatic type conversions when an assignment is performed. Some
information may be lost if the destination can not properly represent the source. For example:
int8var = intl6var; Causes the top byte of intl6var to be lost.

C Compiler

Assigning a smaller signed expression to a larger signed variable will result in the sign being
maintained. For example, a signed 8 bit int that is -1 when assigned to a 16 bit signed variable is
still -1.

Signed numbers that are negative when assigned to a unsigned number will cause the 2's
complement value to be assigned. For example, assigning -1 to a int8 will result in the int8 being
255. In this case the sign bit is not extended (conversion to unsigned is done before conversion to
more bits). This means the -1 assigned to a 16 bit unsigned is still 255.

Likewise assigning a large unsigned number to a signed variable of the same size or smaller will
result in the value being distorted. For example, assigning 255 to a signed int8 will result in -1.

The above assignment rules also apply to parameters passed to functions.

When a binary operator has operands of differing types then the lower order operand is converted
(using the above rules) to the higher. The order is as follows:

o Float

Signed 32 bit
Unsigned 32 bit
Signed 16 bit
Unsigned 16 bit
Signed 8 bit
Unsigned 8 bit
1 bit

The result is then the same as the operands. Each operator in an expression is evaluated
independently. For example:

i32 =16 - (i8 + i8)

The + operator is 8 bit, the result is converted to 16 bit after the addition and the - is 16 bit, that
result is converted to 32 bit and the assignment is done. Note that if i8 is 200 and i16 is 400 then
the result in i32 is 256. (200 plus 200 is 144 with a 8 bit +)

309

TEST PCD

Explicit conversion may be done at any point with (type) inserted before the expression to be
converted. For example in the above the perhaps desired effect may be achieved by doing:

i32 = i16 - ((long)i8 + i8)

In this case the first i8 is converted to 16 bit, then the add is a 16 bit add and the second i8 is
forced to 16 bit.

A common C programming error is to do something like:
i16 =i8 * 100;

When the intent was:
i16 = (long) i8 * 100;

Remember that with unsigned ints (the default for this compiler) the values are never negative. For
example 2-4 is 254 (in 8 bit). This means the following is an endless loop since i is never less than
0:

inti;
for(i=100; i>=0; i--)

How can a constant data
table be placed in ROM?

The compiler has support for placing any data structure into the device ROM as a constant read-
only element. Since the ROM and RAM data paths are separate , there are restrictions on how the

data is accessed. For example, to place a 10 element BYTE array in ROM use:
BYTE CONST TABLE [10]= {9,8,7,6,5,4,3,2,1,0};

and to access the table use:
x = TABLE [i];

OR

x = TABLE [5];

BUT NOT
ptr = &TABLE [i];

In this case, a pointer to the table cannot be constructed.

Similar constructs using CONST may be used with any data type including structures, longs and
floats.

The following are two methods provided:

1. Efficient access with "const".
310

Common Questions and Answers

2. Pointer friendly "ROM" Qualifier, for example:
ROM BYTE TABLE[10] = {9,8,7,6,5,4,3,2,1,0}
and to access the table use:
x = TABLE[i];
or
PTR = &TABLE[i];
and
x = *PTR;
//Be sure not to mix RAM and ROM pointers. They are not
interchangeable.

How can | use two or
more RS-232 ports on
one PIC®?

The #USE RS232 (and 12C for that matter) is in effect for GETC, PUTC, PRINTF and KBHIT
functions encountered until another #USE RS232 is found.

The #USE RS232 is not an executable line. It works much like a #DEFINE.

The following is an example program to read from one RS-232 port (A) and echo the data to both

the first RS-232 port (A) and a second RS-232 port (B).

#USE RS232 (BAUD=9600, XMIT=PIN B0, RCV=PIN BIl)

void put to a(char c) {
put (c);
}
char get from a() {
return (getc()); }

#USE RS232 (BAUD=9600, XMIT:PIN_BZ,RCV:PIN_B3)
void put to b(char b) {
putc (c);
}
main () {
char c;
put to a("Online\n\r");
put to b("Online\n\r");
while (TRUE) {
c=get from a();
put _to b(c);
put _to_a(c);
}
}

The following will do the same thing but is more readable and is the recommended method:

#USE RS232 (BAUD=9600, XMIT=PIN BO, RCV=PIN Bl, STREAM=COM A)
#USE RS232 (BAUD=9600, XMIT=PIN B2, RCV=PIN B3, STREAM=COM B)

311

TEST PCD

main () {
char c;
fprintf (COM A, "Online\n\r");
fprintf (COM B, "Online\n\r");
while (TRUE) {
c = fgetc(COM A);
fputc(c, COM A);
fputc(c, COM B);
}

How do | directly
read/write to internal
registers?

A hardware register may be mapped to a C variable to allow direct read and write capability to the
register. The following is an example using the TIMERO register:

#BYTE timer 1 = 0x 100

timer0O= 128; //set timer0 to 128

while (timer 1 ! = 200); // wait for timer0 to reach 200

Bits in registers may also be mapped as follows:
#BIT T 1 IF = Ox 84.3

while (!T 1 IF); //wait for timerO interrupt

Registers may be indirectly addressed as shown in the following example:
printf ("enter address:");

a = gethex ();

printf ("\r\n value is %$x\r\n", *a);

The compiler has a large set of built-in functions that will allow one to perform the most common
tasks with C function calls. When possible, it is best to use the built-in functions rather than directly
write to registers. Register locations change between chips and some register operations require a
specific algorithm to be performed when a register value is changed. The compiler also takes into
account known chip errata in the implementation of the built-in functions. For example, it is better to
do set_tris_ B (0); rather than *0x 02C6 =0;

How do | do a printf to a
string?
312

Common Questions and Answers

The following is an example of how to direct the output of a printf to a string. We used the \f to
indicate the start of the string.

This example shows how to put a floating point number in a string.

main () {
char string[20];
float f;
£=12.345;
sprintf (string, "\f%6.3f", f);

How do | get getc() to
timeout after a specified
time?

GETC will always wait for a character to become available unless a timeout time is specified in the
#use rs232().

The following is an example of how to setup the PIC to timeout when waiting for an RS232
character.

#include <18F4520.h>

#fuses HS,NOWDT

#use delay(clock=20MHz)

#use rs232 (UART1,baud=9600, timeout=500) //timeout = 500 milliseconds, 1/2
second

void main ()

{

char c;

while (TRUE)
{
c=getc(); //if getc() timeouts 0 is returned to c
//otherwise receive character is returned to c

if(c) //if not zero echo character back
putc(c);

//user to do code

output toggle (PIN_A5);

313

TEST PCD

How do | make a pointer
to a function?

The compiler does not permit pointers to functions so that the compiler can know at compile time
the complete call tree. This is used to allocate memory for full RAM re-use. Functions that could not
be in execution at the same time will use the same RAM locations. In addition since there is no
data stack in the PIC®, function parameters are passed in a special way that requires knowledge at
compile time of what function is being called. Calling a function via a pointer will prevent knowing
both of these things at compile time. Users sometimes will want function pointers to create a state
machine. The following is an example of how to do this without pointers:

enum tasks {taskA, taskB, taskC};

run_ task(tasks task to run) {
switch (task to run) {
case taskA : taskA main(); Dbreak;
case taskB : taskB main(); break;
case taskC : taskC main(); break;

}

How do | wait only a

specified time for a

button press?

The following is an example of how to wait only a specific time for a button press.

#define PUSH BUTTON PIN A4

intl timeout error;

intl timed get button press(void) {
intl6 timeout;

timeout error=FALSE;
timeout=0;
while (input (PUSH BUTTON) && (++timeout<50000)) // 1/2 second
delay us(10);
if (!input (PUSH_BUTTON))
return (TRUE) ; //button pressed
else{
timeout error=TRUE;
return (FALSE); //button not pressed timeout occurred

314

Common Questions and Answers

How do | write variables
to EEPROM that are not a
word?

The following is an example of how to read and write a floating point number from/to EEPROM.
The same concept may be used for structures, arrays or any other types.

* nis an offset into the EEPROM

WRITE_FLOAT—EEPROM(int16 n, float data) {
write eeprom(n, data, sizeof (float));

}
float READ FLOAT EEPROM(intl6é n) {
float data;

(int32)data = read eeprom(n, sizeof (float));
return (data) ;

How does one map a
variable to an 1/0O port?

Two methods are as follows:

#byte PORTB = 0x02C8 //Just an example, check the
#define ALL OUT 0 //DATA sheet for the correct
#define ALL IN Oxff //address for your chip
main () {

int i;

set tris b (ALL OUT);
PORTB = 0;// Set all pins low

for (1=0;1i<=127;++1) // Quickly count from 0 to 127
PORTB=1; // on the I/0 port pin

set tris b(ALL IN);

i = PORTB; // 1 now contains the portb value.

}

Remember when using the #BYTE, the created variable is treated like memory. You must maintain
the tri-state control registers yourself via the SET_TRIS_X function. Following is an example of
placing a structure on an 1/O port:

struct port b layout
{int data : 4;
int rw : 1;
int cd : 1;

}i
315

TEST PCD

struct port b layout port b;

#byte port b = 0x02C8

struct port b layout const INIT 1 = {0, 1,1, };
struct port b layout const INIT 2 = {3, 1,1, };
struct port b layout const INIT 3 = {0, 0,0, };

struct port b layout const FOR SEND = {0,0,0, };
// All outputs
struct port b layout const FOR READ = {15,0,0, };
// Data is an input
main () {
int x;
set _tris b ((int)FOR_SEND) ; // The constant
// structure is
// treated like
// a byte and
// 1is used to
// set the data
// direction
port b = INIT 1;
delay us(25);

port b = INIT 2; // These constant structures delay us(25);
// are used to set all fields
port b = INIT 3; // on the port with a single

// command

set tris b ((int)FOR READ) ;
port b.rw=0;
// Here the individual
port b.cd=1; // fields are accessed
// independently.
x = port b.data;

}

How does the compiler
determine TRUE and
FALSE on expressions?

When relational expressions are assigned to variables, the result is always 0 or 1.

For example:
bytevar = 5>0; //bytevar will be 1
bytevar = 0>5; //bytevar will be 0

The same is true when relational operators are used in expressions.

For example:

316

Common Questions and Answers

bytevar = (x>y)*4;

is the same as:

if(x>y)
bytevar=4;

else
bytevar=0;

SHORT INTSs (bit variables) are treated the same as relational expressions. They evaluate to 0 or
1.

When expressions are converted to relational expressions or SHORT INTSs, the result will be
FALSE (or 0) when the expression is 0, otherwise the result is TRUE (or 1).

For example:
bytevar = 54;
bitvar = bytevar;
if (bytevar)
bytevar = 0;
bitvar = bytevar;

//bitvar will be 1
//will be TRUE

(bytevar ! = 0)

//bitvar will be 0

How does the PIC®
connect to a PC?

A level converter should be used to convert the TTL (0-5V__ levels that the PIC® operates with to
the RS-232 voltages (+/- 3-12V) used by the PIC®. The following is a popular configuration using
the MAX232 chip as a level converter.

+ -+

|—|_’-| —

I 1 16 2 4 14
s s ol
4 Max 232 I | 1spin %
15 |

pc 5 PIC®

14 1 2 (A3)
13 15 12 1(A2) 5
L L

Any two /O
Pins may be
used here

TEST PCD

How does the PIC®
connect to an 12C device?

Two /O lines are required for 12C. Both lines must have pullup registers. Often the 12C device will
have a H/W selectable address. The address set must match the address in S/W. The example
programs all assume the selectable address lines are grounded.

+
—
— 4 14
L1 1 8 —+
18 Pin 16 [T
—12 2416 PIC® | T
1K, 15 |
— 3 6 e 12 (Bs) -
1K+
14 5 [c=1 13 (B7)
5
= +

318

Common Questions and Answers

How much time do math
operations take?

Unsigned 8 bit operations are quite fast and floating point is very slow. If possible consider fixed
point instead of floating point. For example instead of "float cost_in_dollars;" do "long
cost_in_cents;". For trig formulas consider a lookup table instead of real time calculations (see
EX_SINE.C for an example). The following are some rough times on a 24-bit PIC®. Note times will
vary depending on memory banks used.

80mhz dsPIC33FJ (40MIPS)

int8 int1l6 int32 int48 int64 float32 ||float48 float 64

[us] [us] [us] [us] [us] [us] [us] [us]
+ 10075	[0.75	[0175	0.275	[0.375	/ 3.450	[3.825	[5.025			
	0.125	[0.125	[0.200	0.350	[0.400	[3375	[3.725	[5.225		
*	0.175	[0.100		1150		1.850	[1.975	2450	[2.950	[4.525
[/ | 0650 ||0.550 || 13.500 || 25.550 ||68.225 || 12.475 |[22.575 |[33.80 |
lexp) || * | * IE | * | * | 70.675 |[158.55 ||206.125 |
[np | * | | * K | | 94.475 |[157.400 |201.825 |
[sin) | * | * I | * ||+ | 77.875 |[136.925 |[184.225 |

What are the various
Fuse options for the
dsPIC/PIC 24 chips?

DsPIC30F chips fuse Summary:

The oscillator settings for the dsPIC30F family are divided into 3 versions.

Version 1 is the basic version that is supported by all the chips.

Version 2 and Version 3 are additions and improvements to these oscillator settings.

Versionl Chip Features:

Primary Oscillator with multiple clock modes — XT, EC, HS
Secondary Oscillator (Low Power 32 kHz)

FRC - Fast Internal RC 7.37 Mhz

LPRC Low Power Internal RC (512 kHz)

Versionl chips support following PLL Clock Multiplier settings
4x ,8x and 16x PLL mode for XT and EC only

Generic post-scaler (divide by 1,4,16,64)

319

TEST PCD

Version2 Chip Features:
PLL Options applicable for FRC Oscillator

Version3 Chip Features:
PLL Options applicable for the HS Oscillator : Use HS2_PLLx and HS3_PLLx fuses

Versionl Chips:

30F6010, 30F6012, 30F6013, 30F6014

Sample Code for setting fuses for HS mode (Primary Oscillator)
#fuses HS, PR, NOWDT

#use delay(clock=20000000) // A 20 Mhz crystal is used

Sample Code for setting fuses for FRC Internal Oscillator mode
#fuses FRC, NOWDT
#use delay(clock=7370000) // Internal FRC clock of 7.37 Mhz is used

Version2 Chips:
30F2010, 30F4011, 30F4012, 30F5011, 30F5013
Note: The FRC_PLLXx options is added for this version, but this does not include the 30F2010 chip.

Sample Code for setting the fuse for HS mode (Primary Oscillator)
#fuses HS, PR, NOWDT
#use delay(clock=20000000) // A 20 Mhz crystal is used

Sample Code for setting fuses for FRC Internal Oscillator mode
#fuses FRC, NOWDT
#use delay(clock=7370000) // Internal FRC clock of 7.37 Mhz is used

Sample Code for setting fuses for FRC Internal Oscillator mode with PLL enabled
#fuses PR, FRC_PLL8, NOWDT
#use delay(clock=58960000) // Internal FRC clock of 7.37 * 8 = 58.96 Mhz is used

Version3 Chips:
30F2011, 30F2012, 30F3010, 30F3011, 30F3012, 30F3013, 30F3014, 30F4013, 30F5015,
30F5016, 30F6010A, 30F6011A, 30F6012A, 30F6013A, 30F6014A, 30F6015

Sample Code for setting the fuse for HS mode (Primary Oscillator)
#fuses HS, PR, NOWDT
#use delay(clock=20000000) // A 20 Mhz crystal is used

Sample Code for setting fuses for FRC Internal Oscillator mode
#fuses FRC, NOWDT
#use delay(clock=7370000) // Internal FRC clock of 7.37 Mhz is used

Sample Code for setting fuses for FRC Internal Oscillator mode with PLL enabled

#fuses FRC_PLL16, PR_PLL, NOWDT
#use delay(clock=117920000) // Internal FRC clock of 7.37 * 16 = 117.92 Mhz is used

320

Common Questions and Answers

Sample Code for setting fuse for HS mode using PLL options. The following PLL options are
applicable for the HS fuse:

HS2_PLLx : Divide by 2, x times PLL enabled.

HS3_PLLx : Divide by 3, x times PLL enabled.

#fuses HS2_PLL8, PR_PLL, NOWDT
#use delay(clock=20000000) // A 20 Mhz crystal is used

The 30F2020 , 30F1010 and 30F2023 chips are quite different from the other 30F chips
One major difference is that the Instruction clock is divide by 2 of the actual input clock. The other
chips in the family use a divide by 4.

Crystal Frequency Limitations for various fuses:

HS Mode 10 — 25 MHz
XT Mode 4 — 10 MHz
EC Mode 4 — 10 Mhz

Note: The upper limits of these crystal setting will change when the PLL fuses are used. (For
example HS2_PLL16, EC_PLL16). At no point should the system clock exceed 120 MHz after the
PLL block. The instruction clock for the 30F chips is derived by dividing this final clock by 4. So, the
maximum clock rate for the 30F chips is 30 MHz.

What can be done about
an OUT OF RAM error?

The compiler makes every effort to optimize usage of RAM. Understanding the RAM allocation can
be a help in designing the program structure. The best re-use of RAM is accomplished when local
variables are used with lots of functions. RAM is re-used between functions not active at the same
time. See the NOT ENOUGH RAM error message in this manual for a more detailed example.

RAM is also used for expression evaluation when the expression is complex. The more complex
the expression, the more scratch RAM locations the compiler will need to allocate to that
expression. The RAM allocated is reserved during the execution of the entire function but may be
re-used between expressions within the function. The total RAM required for a function is the sum
of the parameters, the local variables and the largest number of scratch locations required for any
expression within the function. The RAM required for a function is shown in the call tree after the
RAM=. The RAM stays used when the function calls another function and new RAM is allocated for
the new function. However when a function RETURNS the RAM may be re-used by another
function called by the parent. Sequential calls to functions each with their own local variables is
very efficient use of RAM as opposed to a large function with local variables declared for the entire
process at once.

Be sure to use SHORT INT (1 bit) variables whenever possible for flags and other boolean

variables. The compiler can pack eight such variables into one byte location. The compiler does
this automatically whenever you use SHORT INT. The code size and ROM size will be smaller.

321

TEST PCD

Finally, consider an external memory device to hold data not required frequently. An external 8 pin
EEPROM or SRAM can be connected to the PIC® with just 2 wires and provide a great deal of
additional storage capability. The compiler package includes example drivers for these

devices. The primary drawback is a slower access time to read and write the data. The SRAM will
have fast read and write with memory being lost when power fails. The EEPROM will have a very
long write cycle, but can retain the data when power is lost.

What is an easy way for
two or more PICs® to
communicate?

There are two example programs (EX_PBUSM.C and EX_PBUSR.C) that show how to use a
simple one-wire interface to transfer data between PICs®. Slower data can use pin BO and the EXT
interrupt. The built-in UART may be used for high speed transfers. An RS232 driver chip may be
used for long distance operations. The RS485 as well as the high speed UART require 2 pins and
minor software changes. The following are some hardware configurations.

SIMPLE MULTIPLE PIC® BUS

=] 0] il

PIC®E PIC® PIC® cee

+5

#USE RS232 (baud=9600, float_high, bits=9, xmit=PIN BO, rcv=PIN BO)

LONG DISTANCE MUTLI-DROP BUS

+ +
| |
I SGMG g * use C6,
] CT7 fi
PIC®* |4 7 7 a1+ PICH hign”
speed or
g2|_| 3 DS75176 DS75176 3 || B2 Speedor
2 5 Several 2 5 slower
PICS can speeds

ITI tapin ‘T‘
parallel =

#USE RS232 (baud=9600, bits=9, xmit=PIN *, RCV=PIN *, enable=PIN B2)

322

Common Questions and Answers

What is an easy way for two or more PICs® to

communicate?

There are two example programs (EX_PBUSM.C and EX_PBUSR.C) that show how to use a
simple one-wire interface to transfer data between PICs®. Slower data can use pin BO and the
EXT interrupt. The built-in UART may be used for high speed transfers. An RS232 driver chip may

be used for long distance operations. The RS485 as well as the high speed UART require 2 pins
and minor software changes. The following are some hardware configurations.

SIMPLE MULTIPLE PIE& BUS

BOJ BOJ BUJ B

PIC® PICE PICE| eue

#USE RES232 (baud=9500, float high, bits=9, mmt=FIN B0, rovw=FIR EO0)

LONG DISTANCE MUTLI-DROP BUS

+ +
|]
1 33w6 P " use G4,
t -] C7 for
PICs* 4 7 |ovtoon] 7 4 | * PICH nign
speed or
g2l_| 3 DS75176 Ds75176 3 || B2 spead o
2 § Several 2 b slower
PICS can speeds
'T' tapin 'T'
- parallel

H#USE R3232 (bLaud=2600, bits=%, K xmit=PIN * K ROV=PIN *, endble=FIN B2}

What is the format of
floating point numbers?

The CCS PCD compiler uses the IEEE format for all the floating point number operations. The
following floating point numbers are supported:

« 32 bit floating point numbers — Single Precision

« 48 bit floating point numbers — Extended Precision

* 64 bit floating point numbers — Double Precision

323

TEST PCD

324

The format of these numbers is as follows:

32 bit floating point numbers — Single Precision

Sign | Exponent | Ex | Mantissa Mantissa
31 30 23 22 0
« 23 bit Mantissa (Bit 0 — Bit 22)
« 8 bit exponent (Bit 23 — bit 30)
« 1 sign bit (Bit 31)
Example Numbers Representation
Hex - 32 bit float
0 0000 0000
1 3F80 0000
-1 BF80 0000
10 4120 0000
100 42C8 0000
123.45 42F6 E666
123.45E20 6427 4E53
213.45E-20 21B6 2E17
31 15
48 bit floating point numbers —Extended Precision
Sign | Exponent | Mantissa Mantissa Mantissa
47 46 39 38 32 31 16 15
* 1 Sign bit — (Bit 47)
« 8 bit Exponent (Bits 39 — 46)
* 39 bit Mantissa (Bit 0 — bit 39)
Example Numbers Representation Hex - 64 bit float
1 3F80 0000 0000
-1 BF80 0000 0000
10 4120 0000 0000
100 42C8 0000 0000
123.45 42F6 E666 6666
123.45E20 6427 4E52 9759
213.45E-20 21B6 2E17 64FF
47 31 15

Common Questions and Answers

64 bit floating point numbers — Double Precision

Sign | Exponent | Mantissa Mantissa Mantissa

63 62 52 51 32 31 16 15 0

* 1 Sign bit — (Bit 47)
« 11 bit Exponent (Bits 52 — 62)
» 52 bit Mantissa (Bit 0 — bit 51)

Example Numbers Representation Hex - 64 bit float

0 0000 0000 0000 0000

1 3FFO 0000 0000 0000

-1 BFFO 0000 0000 0000

10 4024 0000 0000 0000
100 4059 0000 0000 0000
123.45 405E DCCC CCcCC CCccC
123.45E20 4484 E9CA 52EB 182A
213.45E-20 3C36 C5C2 EC9F DBFD

63 47 31 15 0

Why does the .LST file
look out of order?

The list file is produced to show the assembly code created for the C source code. Each C source
line has the corresponding assembly lines under it to show the compiler’s work. The following three
special cases make the .LST file look strange to the first time viewer. Understanding how the
compiler is working in these special cases will make the .LST file appear quite normal and very
useful.

1. Stray code near the top of the program is sometimes under what looks like a non-executable
source line.

Some of the code generated by the compiler does not correspond to any particular source line. The
compiler will put this code either near the top of the program or sometimes under a #USE that
caused subroutines to be generated.

2. The addresses are out of order.

The compiler will create the .LST file in the order of the C source code. The linker has re-arranged

the code to properly fit the functions into the best code pages and the best half of a code page. The

resulting code is not in source order. Whenever the compiler has a discontinuity in the .LST file, it
325

TEST PCD

will put a * line in the file. This is most often seen between functions and in places where INLINE
functions are called. In the case of an INLINE function, the addresses will continue in order up
where the source for the INLINE function is located.

3. The compiler has gone insane and generated the same instruction over and over.

For example:

46:CLRF 15

*

051: CLRF 15

*

113: CLRF 15

This effect is seen when the function is an INLINE function and is called from more than one place.
In the above case, the A=0 line is in an INLINE function called in four places. Each place it is called
from gets a new copy of the code. Each instance of the code is shown along with the original
source line, and the result may look unusual until the addresses and the * are noticed.

Why is the RS-232 not
working right?

1. The PIC® is Sending Garbage Characters.
A. Check the clock on the target for accuracy. Crystals are usually not a problem but RC
oscillators can cause trouble with RS-232. Make sure the #USE DELAY matches the
actual clock frequency.

B. Make sure the PC (or other host) has the correct baud and parity setting.

C. Check the level conversion. When using a driver/receiver chip, such as the MAX 232,
do not use INVERT when making direct connections with resistors and/or diodes. You
probably need the INVERT option in the #USE RS232.

D. Remember that PUTC(6) will send an ASCII 6 to the PC and this may not be a visible
character. PUTC('A") will output a visible character A.

2. The PIC® is Receiving Garbage Characters.
A. Check all of the above.

3. Nothing is Being Sent.
A. Make sure that the tri-state registers are correct. The mode (standard, fast, fixed) used
will be whatever the mode is when the #USE RS232 is encountered. Staying with the
default STANDARD mode is safest.

B. Use the following main() for testing:

326

Common Questions and Answers

main () {
while (TRUE)
putc ('U");
}

Check the XMIT pin for activity with a logic probe, scope or whatever you can. If you can
look at it with a scope, check the bit time (it should be 1/BAUD). Check again after the level
converter.

4. Nothing is being received.
First be sure the PIC® can send data. Use the following main() for testing:
main () {
printf ("start");
while (TRUE)
putc(getc()+1);
}

When connected to a PC typing A should show B echoed back.

If nothing is seen coming back (except the initial "Start"), check the RCV pin on the PIC®
with a logic probe. You should see a HIGH state and when a key is pressed at the PC, a
pulse to low. Trace back to find out where it is lost.

5. The PIC® is always receiving data via RS-232 even when none is being sent.
A. Check that the INVERT option in the USE RS232 is right for your level converter. If the
RCV pin is HIGH when no data is being sent, you should NOT use INVERT. If the pin is
low when no data is being sent, you need to use INVERT.

B. Check that the pin is stable at HIGH or LOW in accordance with A above when no data
is being sent.

C. When using PORT A with a device that supports the SETUP_ADC_PORTS function
make sure the port is set to digital inputs. This is not the default. The same is true for
devices with a comparator on PORT A.

6. Compiler reports INVALID BAUD RATE.

A. When using a software RS232 (no built-in UART), the clock cannot be really slow when
fast baud rates are used and cannot be really fast with slow baud rates. Experiment with
the clock/baud rate values to find your limits.

B. When using the built-in UART, the requested baud rate must be within 3% of a rate that
can be achieved for no error to occur. Some parts have internal bugs with BRGH set to 1
and the compiler will not use this unless you specify BRGH1OK in the #USE RS232
directive.

327

EXAMPLE PROGRAMS

MR
L

C Compiler

EXAMPLE PROGRAMS

A large number of example programs are included with the software. The following is a list of many
of the programs and some of the key programs are re-printed on the following pages. Most
programs will work with any chip by just changing the #INCLUDE line that includes the device
information. All of the following programs have wiring instructions at the beginning of the code in a
comment header. The SIOW.EXE program included in the program directory may be used to
demonstrate the example programs. This program will use a PC COM port to communicate with
the target.

Generic header files are included for the standard PIC® parts. These files are in the DEVICES
directory. The pins of the chip are defined in these files in the form PIN_BZ2. It is recommended that
for a given project, the file is copied to a project header file and the PIN_xx defines be changed to
match the actual hardware. For example; LCDRW (matching the mnemonic on the schematic). Use
the generic include files by placing the following in your main .C file:

#include <16C74.H>

LIST OF COMPLETE EXAMPLE PROGRAMS (in the EXAMPLES directory)

EX_1920.C
Uses a Dallas DS1920 button to read temperature

EX_AD12.C
Shows how to use an external 12 bit A/D converter

EX_ADMM.C
A/D Conversion example showing min and max analog readings

EX_ADMM10.C
Similar to ex_admm.c, but this uses 10bit A/D readings.

EX_ADMM_STATS.C
Similar to ex_admm.c, but this uses also calculates the mean and standard deviation.

EX_BOOTLOAD.C
A stand-alone application that needs to be loaded by a bootloader (see ex_bootloader.c for a
bootloader).

EX_BOOTLOADER.C
A bootloader, loads an application onto the PIC (see ex_bootload.c for an application).

329

TEST PCD

EX_CAN.C
Receive and transmit CAN packets.

EX_CHECKSUM.C
Determines the checksum of the program memory, verifies it agains the checksum that was written
to the USER ID location of the PIC.

EX_COMP.C
Uses the analog comparator and voltage reference available on some PIC 24 s

EX_CRC.C
Calculates CRC on a message showing the fast and powerful bit operations

EX_CUST.C
Change the nature of the compiler using special preprocessor directives

EX_FIXED.C
Shows fixed point numbers

EX_DPOT.C
Controls an external digital POT

EX_DTMF.C
Generates DTMF tones

EX_ENCOD.C
Interfaces to an optical encoder to determine direction and speed

EX_EXPIO.C
Uses simple logic chips to add 1/O ports to the PIC

EX_EXSIO.C
Shows how to use a multi-port external UART chip

EX_EXTEE.C
Reads and writes to an external EEPROM

EX_EXTDYNMEM.C
Uses addressmod to create a user defined storage space, where a new qualifier is created that
reads/writes to an extrenal RAM device.

EX_FAT.C
An example of reading and writing to a FAT file system on an MMC/SD card.

EX_FLOAT.C
Shows how to use basic floating point

EX_FREQC.C
A 50 mhz frequency counter

330

Example Programs

EX_GLCD.C
Displays contents on a graphic LCD, includes shapes and text.

EX_GLINT.C
Shows how to define a custom global interrupt hander for fast interrupts

EX_HUMIDITY.C
How to read the humidity from a Humirel HT3223/HTF3223 Humidity module

EX_ICD.C
Shows a simple program for use with Microchips ICD debugger

EX_INPUTCAPTURE.C
Uses the PIC input capture module to measure a pulse width

EX_INTEE.C
Reads and writes to the PIC internal EEPROM

EX_LCDKB.C
Displays data to an LCD module and reads data for keypad

EX_LCDTH.C
Shows current, min and max temperature on an LCD

EX_LED.C
Drives a two digit 7 segment LED

EX_LOAD.C
Serial boot loader program

EX_LOGGER.C
A simple temperature data logger, uses the flash program memory for saving data

EX_MACRO.C
Shows how powerful advanced macros can be in C

EX_MALLOC.C
An example of dynamic memory allocation using malloc().

EX_MCR.C
An example of reading magnetic card readers.

EX_MMCSD.C
An example of using an MMC/SD media card as an external EEPROM. To use this card with a
FAT file system, see ex_fat.c

EX_MODBUS_MASTER.C
An example MODBUS application, this is a master and will talk to the ex_modbus_slave.c example.

331

TEST PCD

EX_MODBUS_SLAVE.C
An example MODBUS application, this is a slave and will talk to the ex_modbus_master.c example.

EX_MOUSE.C
Shows how to implement a standard PC mouse on a PIC

EX_MXRAM.C
Shows how to use all the RAM on parts with problem memory allocation

EX_OUTPUTCOMPARE.C
Generates a precision pulse using the PIC output compare module.

EX_PATG.C
Generates 8 square waves of different frequencies

EX_PBUSM.C
Generic PIC to PIC message transfer program over one wire

EX_PBUSR.C
Implements a PIC to PIC shared RAM over one wire

EX _PBUTT.C
Shows how to use the B port change interrupt to detect pushbuttons

EX_PGEN.C
Generates pulses with period and duty switch selectable

EX_PLL.C
Interfaces to an external frequency synthesizer to tune a radio

EX_PSP.C
Uses the PIC PSP to implement a printer parallel to serial converter

EX_PULSE.C
Measures a pulse width using timerO

EX_PWM.C
Uses the PIC output compare module to generate a PWM pulse stream.

EX_QSORT.C
An example of using the stdlib function gsort() to sort data. Pointers to functions is used by gsort()
so the user can specify their sort algorithm.

EX_REACT.C
Times the reaction time of a relay closing using the input capture module.

EX_RFID.C
An example of how to read the ID from a 125kHz RFID transponder tag.

332

Example Programs

EX_RMSDB.C
Calculates the RMS voltage and dB level of an AC signal

EX_RS485.C
An application that shows a multi-node communication protocol commonly found on RS-485
busses.

EX_RTC.C
Sets and reads an external Real Time Clock using RS232

EX_RTCLK.C
Sets and reads an external Real Time Clock using an LCD and keypad

EX_RTCTIMER.C
How to use the PIC's hardware timer as a real time clock.

EX_RTOS_DEMO_X.C
9 examples are provided that show how to use CCS's built-in RTOS (Real Time Operating
System).

EX_SINE.C
Generates a sine wave using a D/A converter

EX_SISR.C
Shows how to do RS232 serial interrupts

EX_STISR.C
Shows how to do RS232 transmit buffering with interrupts

EX_SLAVE.C
Simulates an 12C serial EEPROM showing the PIC slave mode

EX_SPEED.C
Calculates the speed of an external object like a model car

EX_SPI.C
Communicates with a serial EEPROM using the H/W SPI module

EX_SPI_SLAVE.C
How to use the PIC's MSSP peripheral as a SPI slave. This example will talk to the ex_spi.c
example.

EX_SQW.C
Simple Square wave generator

EX_SRAM.C
Reads and writes to an external serial RAM

333

TEST PCD

EX_STEP.C
Drives a stepper motor via RS232 commands and an analog input

EX_STR.C
Shows how to use basic C string handling functions

EX_STWT.C
A stop Watch program that shows how to user a timer interrupt

EX_SYNC_MASTER.C

EX_SYNC_SLAVE.C

An example of using the USART of the PIC in synchronous mode. The master and slave examples
talk to each other.

EX_TANK.C
Uses trig functions to calculate the liquid in a odd shaped tank

EX_TEMP.C
Displays (via RS232) the temperature from a digital sensor

EX_TGETC.C
Demonstrates how to timeout of waiting for RS232 data

EX_TONES.C
Shows how to generate tones by playing "Happy Birthday"

EX_TOUCH.C
Reads the serial number from a Dallas touch device

EX_USB_HID.C
Implements a USB HID device on the PIC16C765 or an external USB chip

EX_USB_SCOPE.C
Implements a USB bulk mode transfer for a simple oscilloscope on an ext ernal USB chip

EX_USB_KBMOUSE.C

EX_USB_KBMOUSE2.C

Examples of how to implement 2 USB HID devices on the same device, by combining a mouse and
keyboard.

EX_USB_SERIAL.C

EX_USB_SERIAL2.C

Examples of using the CDC USB class to create a virtual COM port for backwards compatability
with legacy software.

EX_VOICE.C
Self learning text to voice program

334

Example Programs

EX_WAKUP.C
Shows how to put a chip into sleep mode and wake it up

EX_WDTDS.C
Shows how to use the dsPIC30/dsPIC33/PIC24 watchdog timer

EX_X10.C
Communicates with a TW523 unit to read and send power line X10 codes

EX_EXTA.C
The XTEA encryption cipher is used to create an encrypted link between two PICs.

LIST OF INCLUDE FILES (in the DRIVERS directory)

2401.C
Serial EEPROM functions

2402.C
Serial EEPROM functions

2404.C
Serial EEPROM functions

2408.C
Serial EEPROM functions

24128.C
Serial EEPROM functions

2416.C
Serial EEPROM functions

24256.C
Serial EEPROM functions

2432.C
Serial EEPROM functions

2465.C
Serial EEPROM functions

25160.C
Serial EEPROM functions

25320.C
Serial EEPROM functions

25640.C
Serial EEPROM functions

335

TEST PCD

25C080.C
Serial EEPROM functions

68HC68R1
C Serial RAM functions

68HC68R2.C
Serial RAM functions

74165.C
Expanded input functions

74595.C
Expanded output functions

9346.C
Serial EEPROM functions

9356.C
Serial EEPROM functions

9356SPI.C
Serial EEPROM functions (uses H/W SPI)

9366.C
Serial EEPROM functions

AD7705.C
A/D Converter functions

AD7715.C
A/D Converter functions

AD8400.C
Digital POT functions

ADS8320.C
A/D Converter functions

ASSERT.H
Standard C error reporting

AT25256.C
Serial EEPROM functions

AT29C1024.C
Flash drivers for an external memory chip

336

Example Programs

CRC.C
CRC calculation functions

CE51X.C
Functions to access the 12CE51x EEPROM

CE62X.C
Functions to access the 12CE62x EEPROM

CE67X.C
Functions to access the 12CE67x EEPROM

CTYPE.H
Definitions for various character handling functions

DS1302.C
Real time clock functions

DS1621.C
Temperature functions

DS1621M.C
Temperature functions for multiple DS1621 devices on the same bus

DS1631.C
Temperature functions

DS1624.C
Temperature functions

DS1868.C
Digital POT functions

ERRNO.H
Standard C error handling for math errors

FLOAT.H
Standard C float constants

FLOATEE.C
Functions to read/write floats to an EEPROM

INPUT.C
Functions to read strings and numbers via RS232

1ISD4003.C
Functions for the ISD4003 voice record/playback chip

337

TEST PCD

KBD.C
Functions to read a keypad

LCD.C
LCD module functions

LIMITS.H
Standard C definitions for numeric limits

LMX2326.C
PLL functions

LOADER.C
A simple RS232 program loader

LOCALE.H
Standard C functions for local language support

LTC1298.C
12 Bit A/D converter functions

MATH.H
Various standard trig functions

MAX517.C
D/A converter functions

MCP3208.C
A/D converter functions

NJU6355.C
Real time clock functions

PCF8570.C
Serial RAM functions

SC28L19X.C
Driver for the Phillips external UART (4 or 8 port)

SETIMP.H
Standard C functions for doing jumps outside functions

STDDEF.H
Standard C definitions

STDIO.H
Not much here - Provided for standard C compatibility

338

Example Programs

STDLIB.H
String to number functions

STDLIBM.H
Standard C memory management functions

STRING.H
Various standard string functions

TONES.C
Functions to generate tones

TOUCH.C
Functions to read/write to Dallas touch devices

USB.H
Standard USB request and token handler code

USBN960X.C
Functions to interface to Nationals USBN960x USB chips

USB.C
USB token and request handler code, Also includes usb_desc.h and usb.h

X10.C
Functions to read/write X10 codes

339

SOFTWARE LICENSE AGREEMENT

ot
L

C Compiler

SOFTWARE LICENSE
AGREEMENT

By opening the software diskette package, you agree to abide by the following provisions. If you
choose not to agree with these provisions promptly return the unopened package for a refund.

1. License- Custom Computer Services ("CCS") grants you a license to use the software program
("Licensed Materials") on a single-user computer. Use of the Licensed Materials on a network
requires payment of additional fees.

2. Applications Software- Derivative programs you create using the Licensed Materials identified
as Applications Software, are not subject to this agreement.

3. Warranty- CCS warrants the media to be free from defects in material and workmanship and
that the software will substantially conform to the related documentation for a period of thirty (30)
days after the date of your purchase. CCS does not warrant that the Licensed Materials will be free
from error or will meet your specific requirements.

4. Limitations- CCS makes no warranty or condition, either expressed or implied, including but not
limited to any implied warranties of merchantability and fitness for a particular purpose, regarding
the Licensed Materials.

Neither CCS nor any applicable licensor will be liable for an incidental or consequential damages,
including but not limited to lost profits.

5. Transfers- Licensee agrees not to transfer or export the Licensed Materials to any country other
than it was originally shipped to by CCS.

The Licensed Materials are copyrighted

© 1994-2010 Custom Computer Services Incorporated
All Rights Reserved Worldwide

P.O. Box 2452

Brookfield, W1 53008

341

INDEX

#BANK_DMA
HBANKX. ...

#DEFINEDINC
#DEVICE

#ERROR
HEXPORT ..o
AFILL_ROM ..o
#FUSES..........cee.
#HEXCOMMENT
#D....

#IF expr.....ccooeeeeeen.
FIFDEF ..o
FIFNDEF ..o
#IGNORE_WARNINGS
FIMPORT ...
FINCLUDE ...
#INLINE
FINT_ACL oo
FINT_AC2 .o
#INT_ACS.......cc....

#INT_ACA

#INT_AD2...............

#INT_ADC1
#INT_ADC2
#INT_ADCPO
#INT_ADCP1
#INT_ADCP2
#INT_ADCP3
#INT_ADCP4 ..o
#INT_ADCP5
#INT_ADDRERRoooviiiiiiiiieeiccce
FINT_CIRX oo
FINT_CLTX oo

HINT _C2RX oo, 98
#INT_C2TX
#INT_CAN1
HINT_CANLE ..o,
#INT_CAN1RX
#INT_CANLTX
#INT_CAN2....ovon,
#INT_CANZE
#INT_CAN2RX
#INT_CAN2TX
FINT_CNI oo
HINT_CRC oo,
#INT_DCI
HINT _DCIE e
HINT_DEFAULT .o 101
#INT_DMAO .

#INT_DMA1
#INT_DMA2
#INT_DMA3
#INT_DMA4
#INT_DMAS5
#INT_DMA6
#INT_DMA7
HINT_DMAERR ..o, 98
#INT_EXT1
#INT_EXT2
#INT_EXT3
#INT_EXT4
#INT_FAULTA........... ...08
#INT_FAULTA2
#INT_FAULTB...........
#INT_IC1
#INT_IC2
#INT_IC3
#INT_IC4
#INT_IC5
#INT_IC6
#INT_IC7
#INT_IC8
HINT_LOWVOLT oo, 98
HINT_LVD oo 98
#INT_MATHERR .
#INT_MI2C...oeenn ...98
#INT_MI2CL.............. ...98
HINT _MI2C2..eoeeeeeeeeeeeeeeeeee, 98

TEST PCD

#INT_NVM
HINT_OCLoeoeeeeeeeeeeeeseeeeeesennirniinn 98 HOCS oo,
HINT_OC2.eeeeeeeeeeeeeceseseesneseeniinnn 98 HOPT.......

HINT_OC3..eveeeeeeseeeceneseeecenenirninn 98 HORG e,
#INT_OC4
#INT_OC5
#INT_OC6
HINT_OCT oo 98 H#ROMueieieeeeeeeen,
#INT_OC8
HINT_OSC_FAIL .o
#INT_PMP
#INT_PWM
FINT_PWML ..o BUNDEFooocveeeeeoeeeee e
FINT _PWMZ2 ..o HUSE DELAY ..ot
#INT_PWM3........... #USE DYNAMIC_MEMORY
#INT_PWM4.......... HUSE FAST 10,

#INT_PWMP........... #USE FIXED_IO
#INT_PWMP2......... #USE 12C oo,

#INT_PWMSEM #USE RS232.............
#INT_QEl..oooee.n. #USE RTOS..............

#INT_RDA BUSE SPlcoooeeeeeeoeeeeeeeeeeeeee,
#INT_RDA2 #USE STANDARD Ocooovvenan..

FINT _RTCoeeeeeeeeeeeeeeeeee e HUSE TIMER......oommoveeeeeeeeeseeeeereeeeeees
HINT _SI2C oo H#USE_TOUCHPAD......cooovvmreereerereesrnnes
#INT_SI2C1 #WARNING

#INT_SI2C2..ooevvviiiiiiiiiicieeee 98 HWORD .
#INT_SPIL ..o 98 #ZERO_RAM L

#INT_SPI1E............ .

#INT_SPI2 LSTAfile e 301
#INT_SPI2E............ ;

#INT_SPIE.............. F e 27
#INT_STACKERR .. _

FINT_TBE ...

FINT_TBEZ ...

#INT_TIMER1
#INT_TIMER2 _ DATE_ e 86
#INT_TIMERS _ DEVICE__ .ot 90
#INT_TIMERA4 __FILE__
#INT_TIMERS _ FILENAME__ ... 92
#INT_TIMERG

#INT_TIMERTY

#INT_TIMERS.........

#INT_TIMER9.........

#INT_UART1E

. adc_done .
... Addressmod..........ccoeeeiiiiiiiiiiiiiieienn. 38

344

Analog_Comparator
ASM ..o,
assert....

atoe...
atof....

atoi48....
atoi64....

Index

C
Calling_the_compiler
calloC....cccovieiiiiiiic

char_bit...........cc.ee.
clear_interruptccccoeeeiiiiieeeeennnnes

Command_Line_Compilercccccvvvernen.
Comment

constant_data_table...........cccccoeeeiiiinnnennn.
CONLINUE.......eeiiiiiiieeeiie e

D

dac_WIIte.......ocovivieeeee e 140
Data_EEPROM.......ccccoiiiiieiniiee e 50
data_table .
Data_TYPES....ccvvvriiiiiiiiiiiiiiieiiiiieieieieeeeeieies
DATE .ooiiiieee et

dci_data_received.....
dci_read.......ccccounee.
deci_start ...
dci_transmit_ready....
deci_write.......cooennneee.
defaultccccoeenneen.
Default_Parameters ..
DEFINE......coiiiiiieeeee e,

delay_cycles.........ccoceiiiiiiiiiiiiee
delay_MS......oooiiiiiiiiiii
delay us........ccceee.
DEVICE........ccccecuvenn.
Directories.................
disable_interrupts
iV e
DMA....

TEST PCD

errno.h

EX_STLC et 261
Example_Programs

ext_int_edge...........
Extended RAM
EXEEIM .t

File_Formats.......c.ccooovciiiieeeeeiiiieieee e
FILENAME ...t

FILL_ROM..............
FIXED_IO
float......oooovvvvvvnnnnnnn.
float.h......oooeeeeennnnnn.
float32......cceeeeeennnnn.
float48........ccceeennnnn.
float64

G

et _CAPLUIeX covevviii e 154
get_motor_pwm_count155
OEL_MCC157
get_tiCKS. ..o 155

346

get_tiMer ..o
get_timerl.................
get_timer2.................
get_timer23...............
get_timer3.................
get_timer4.................
get_timerd5...............
get_timer5.................
get_timer6..................
get_timerb7cceveeeieeeeiieee e
get_timer7
get_timer8
get_timer89......cccvvveeeiiiiee e
get_timer9 ...
get_timerx.................
get_timerxy
get_tris_a.......oceueeeeee.
get_tris_b ..o
get_tris_C....coceeevnnenn.
get tris_d....cccoeevnnnn.
get tris_e....coceeevnneen.
get tris_f...cooeernnenn.
[0 < A 1 S o [P SRR
QL rIS_N oo
get_tris_j
QL IIS_K toviiiei e
OELTIIS_X toviieee e
0[] (cRUTRRRRTRRIN

getch

[0 0] (o USRS
gOto_addresSscvveevviieeiiiiiie e
H
HEXCOMMENT ...cooiiiiiieee e 94
high_speed_adc_done............c.cccoevveennnns 163
How do | wait only a specified time for a
button Press?.....eeveveeeiiiiiiies 289
How_are_type_conversions_handled?285
How_can_a_constant_data_table_be_place
d_in_ROM?ooviiiiiieeeie e 286
How_can_I|_use_two_or_more_RS-
232_ports_on_one_PIC?.......cccccevvniunns 287
How_do_|_directly_read/write_to_internal_re
JISTEIS? i 287
How_do_|_do_a_printf_to_a_string? 288
How_do_|_get getc_to_timeout_after_a_spe
cified_time?cccoeeei 288

How_does_one_map_a_variable_to_an_I/O
CPOME? 290

How_does_the_PIC_connect_to_a_PC?.292

How_does_the_PIC_connect_to_an_I12C_de

VICE? ittt 293
How_much_time_do_math_operations_take

2 s 293
I

IFNDEF
IGNORE_WARNINGS
IMPORT

Index

internal_registers
interrupt_active..........cccccveeeeeeeinnnen, .
INTEITUPES ...
Invoking_the_Command_Line_Compiler.....9
ISAINUM....oiiiici e
isalnum_char
isamongcccoe.....

ISCNEIl. e
1o 1o || SRR
isgraph

islower
ISPINT oo
ispunct.....

isspace....
isupper ...

License_Agreementccccocveeeeiineennnns
limits.h..oooooi,

longlongcccccuveennne
[ONQG_MAX .ttt
[ONG_MIN L
longjmp
[ONGIMP_ oo

memcmp
memcpy

TEST PCD

Multiple_Project_Files...................
multiple_RS-232_ports

OffSELOf ..o
offsetof _
offsetofbit
Operator_Precedence.........c.cccccceovvvvvnnn... 30
Operators

output_a......cceveenneee.
output_b......cceeeneee.
output_bit
OULPUL_C v
Output_Compare
OULPUL_ e
OULPUL_AFIVE ..o
ouUtpUt_€..ccovevvvrnnee
output_f.....ccoveenne
output_float.............
OULPUL_G.vvevveeieeenen
output_h......ccceenee
output_high.............
(o101 101 (Y IR
OULPUL_J.vveeeiiiiieee
OULPUL_K et
OULPUL_IOW .
output_toggle .
OULPUL X .t
Overloaded Functions...........cccceeevivnnnnnnnne 32
P

PCD_OVEIVIEW ...cccvvvvveveieieieieiiieieieveieieveieees 1
PEITON ettt 188
PIC_to_l2C.............293
PIC_to_PC.............. ...292
pmp_address..........189
pmp_input_full189
pmp_output_full
PMP_OVErflowcoeeeriiiiiiiiiiieiiiiiee, 189

348

PMP_read........oeeeiieiiiiiieieee e
pmp_writeccco......
port_x_pullups...........
POW .o
PRAGMAccceen.
printf.......ccccoeviiinnenn.
psp_input_full............
psp_output_full
psp_overflow.............
PSP_readeeiieiiieeieiee e
PSP_WIILE ...t
ptrdiff_t
PULC .ottt

gei_get_count
gei_set_count
gei_status..................

read_adc...................
read_adc2
read_configuration_memory 201
read_€eprom.......ccccccveevnieeesninneennns
read_extended_ram
read_high_speed_adc.....................
read_program_memory
read_rom_memory
realloccccceevvneens

RECURSIVEcoooviiiiiiiieeeiiiees
Reference_Parameters .
TEOISTET vttt
RESERVEcoviiieeite e
reset_cpu
FEStArt_CAUSEeeveiiviieeiiieeesiieeeesiiiee e
restart Wtooevvvvviiiiiiiiiiiiiieeeeeeees
Returncccoceeeeen.

rotate_left.................
rotate_right................
RS232
RS-232....
rtc_alarm_read
rtc_alarm_write
L (ol =T Lo [N

rtos_await
rtos_disable
rtos_enable.............
rtos_msg_poll
rtos_msg_read........
rtos_msg_send....... .
FEOS_OVEITUN....ueveeesieiieeeeiireeeiieeeesnieeeennes
TEOS_TUN.ceiiiiieeeeiiee s ctie e e e e eeeee e e snaeeeennes
rtos_signal .
MEOS_STALS ..vvveeveieee e
rtoS_terminate...........cccvvvvveeeeeiviiiiiieeeeeen,
rtos_wait
rtos_yield
S

SChar_MaXccoooiiiiiiieiiee e
schar_min...............
Semi_Colon............
SEPARATE.............
SERIALIZE
set_adc_channel.............cccoovveniiiiiiinnns
set_adc_channel2
set_compare_time .
set_motor_pwm_duty........c.ccceeerciniennnnee.
set_motor_pwm_event........cccceveerveennen.
set_motor_unit
set_pullup
set_tickS....cccceeiins
set_timer23.............
set_timerd5.............
set_timer67.............
set_timer89.............
set_timerx............... .
SEt_tIMEIXY oo
SEL_NS_ 8 eeeeiiiieeeiiie e
set_tris b
set _tris ¢
set _tris d
set_tris_e
set_tris_f
Set_trs_g..cccoverenne
set_tris_h......ccee.e
Set_tris_i..ccccvrirenne
set tris K....ooooeennn.
set tris Xoooeeeennn
set_uart_speed
SEUMP et

Index

SEMP.N e
setimp_ e,
setup_adc
setup_adc_mode.......
setup_adc_ports........
setup_adc_ports2
setup_adc2
setup_adc2mode.......
setup_capture
Setup_COMPAratorcccevveerieerieenieens
SEtUP_COMPATEoovivieriieeiiieniee s
setup_crc
SEtUP_daC .uvvveeeeeiiiieeee e
SEtUP_dCiuuuiiiiiieiiiiiiiiieee e
setup_dmaccooeeivieiieeeeeee,
setup_high_speed_adc...................
setup_high_speed_adc_pair...........
setup_low_volt_detect.....................
setup_motor_pwm
setup_motor_unit

setup_oscillator

Setup_pmpcoceeenee.

SELUP_PSP cvveeeieeeiie ettt
SELUP_JEI e
setup_rtc
setup_rtc_alarmccocoeeeviiiieiiieieciien
SELUP_SPi.ccereeeeiireee ettt
setup_timer

setup_timerl
setup_timer2
setup_timer3
setup_timer4
setup_timer5
setup_timer6
setup_timer7
setup_timer8
setup_timer9

TEST PCD

SIZEOF e 29
sleep....cccoeereeeninis248
spi_data_is_in......... ... 249
spi_data_is_in2 ... 249
spi_read.................. ... 249
spi_read2................ ... 249

SPi_WIite....vveveeeeins
Spi_Write2................

STANDARD_IO
standard_string_functions
Statements........cccceeveeiiiiiiiiieeeeenn,

stddef.h........oouueen...
()00 [To 1 o I
stdlib.h ..o

SIICIMP et
strcoll

(5141 oo P

strncat
strncmp
SHNCPY it
strrchr
strspn
[() |

350

tolowercccceeeeeinnes
touchpad_getc...........
touchpad_hit
touchpad_state..........
[(10]'] o1=] SRR
Trigraph_Sequences

uchar_ MaXcccceeeeeiiiiiieieee e
uchar_ min ..o
uint_maxcceeeeeeennn.
ulong_max
UNDEF....

unsignedcc.e....
USE _RS232
USE _RTOS.....coeiiviieeiieee e
USE DYNAMIC_MEMORY
USE SPl..iiiiiiiieeeeee e
USE_DELAY ...ttt
USE_FAST_IO
USE_FIXED_IO ...ooiiiiiiiiiiieieeieeee e
USE_I12C ..o
USE_STANDARD_IOcccevuvenee.

USE_TOUCHPAD.........coevrerennnen.

USHIt_ MaX ..o

Variable_Parameters
VOI 1
VOlatile ...
w

WARNING.......ooeiiiiieiiiiee et
Watch_Dog_Timerccccceevniiiiiiieeennnins
wchar_t

WDT_or_Watch_Dog_Timer
What are the various Fuse options for the

dSPIC/PIC 24 chipSccccvveviiieeeiiieeens 295
What_can_be_done_about_an_OUT_OF_R

AM_EITOI?. . 297
WHIl .o 24

Why does_the .LST file_look_out_of order

... 301
Why is_the_RS-232_not_working_right? 302
WORDovvviiiiieiieeee e, ... 124
write_configuration_memory266
WItE_EEPIOM ..uiiiiee it 266

Index

write_extended_ram..........coocieieeeeenninns
write_program_memorycccceecveeernune.
Z

ZERO_RAM ..ottt

351

